Designing Rational Surfaces
with Rational Offsets

Martin Peternell and Helmut Pottmann

Abstract. Classical Laguerre geometry provides an efficient approach to the
design of rational surfaces with rational offsets. The geometric transformation
which describes the change from the isotropic model of 3-dimensional Euclidean
Laguerre space to the standard model, maps an arbitrary rational surface onto
a rational surface all whose offsets are rational. It is shown how to apply this
concept to surface modeling. In particular, we present a new surface design
scheme which uses triangular patches on parabolic Dupin cyclides.

§1. Introduction

Offset curves and surfaces arise in various applications including NC milling, path
planning for rapid prototyping, font design and geometric tolerancing. It is well-
known that rational curves or surfaces do in general not possess rational offsets. In
order to comply with current industry standards, offset curves or surfaces therefore
have to be approximated in rational B—spline form [6,11].

A different approach to offsets takes its origin in the work of R. Farouki and T.
Sakkalis [9] who proposed to use only those curves in the design process that do pos-
sess rational offsets. Farouki and Sakkalis introduced the so—called Pythagorean—
hodograph (PH) curves, which are polynomial curves z(t) = (z1(t),z2(t)) with
polynomial parametric speed o(t) = y/22 + 2. Among other remarkable proper-
ties, these curves possess rational offsets z4(t) = z(t) + dn(t), where n(t) is a field
of unit normal vectors of the progenitor curve z(¢). Recent work on PH curves and
their generalizations to the full class of rational curves with rational offsets showed
that these curves are well suited for practical design purposes [1,2,7,8,12,19,20].

Using the dual representation, it has been shown in [19] that all rational surfaces
with rational offsets (briefly called PH surfaces in the sequel) can be described ex-
plicitly. Based on the dual Bézier or B-spline representation, one can construct PH
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surfaces from the dual representation of spherical patches. Furthermore, unexpected
results on offsets of special classes of surfaces could be derived [13,14,15,18,21].

We will now present a new geometric approach to PH surfaces based on La-
guerre geometry. After a brief introduction into this classical type of geometry,
we describe a geometric transformation that maps any rational surface onto a PH
surface. Any PH surface may be obtained in this way. Graphs of polynomial or
rational bivariate spline functions are mapped onto patchworks of PH surfaces. As
an example, paraboloids are mapped onto parabolic Dupin cyclides and any mod-
eling scheme with bivariate quadratic splines is transformed into a surface design
scheme with cyclide patches. This new application of cyclides in free—form surface
design offers more flexibility than existing techniques (see [10,16,23,24,25,26] and
the references therein).

§2. A Brief Introduction to Laguerre Geometry

The fundamental elements of Laguerre geometry in Euclidean R3 are oriented planes
and cycles. A cycle is an oriented sphere or a point (sphere with radius 0). The
orientation is determined by a unit normal vector field or equivalently by a signed
radius in the case of the sphere. If no ambiguity can arise, oriented planes will
simply be called ’planes’ in the sequel.

The basic relation in Laguerre geometry is that of oriented contact of cycle and
plane. An oriented sphere and a plane are in oriented contact, if they are tangent
and the unit normals coincide in the point of contact. For a point and a plane,
oriented contact equals incidence.

Laguerre geometry studies properties which are invariant under Laguerre trans-
formations. A Laguerre transformation consists of two bijective maps, one in the
set of cycles and the other one in the set of planes. Additionally, a Laguerre trans-
formation preserves oriented contact and non—contact between cycles and planes. A
simple example of a Laguerre transformation is a dilatation which adds a constant
d # 0 to the signed radius of each cycle and leaves its midpoint unchanged. Note
that this map does not preserve points. Considering a surface as envelope of its
oriented tangent planes, a dilatation maps the surface onto its offset at distance
d. This already indicates the advantage of using Laguerre geometry in connection
with offsets.

Using cartesian coordinates z; in IR?, each plane e is defined by a linear equation
€o + €121 + €272 + e323 = 0. The coefficients e; are called plane coordinates of e.
The vector (ey, ez, e3) defines the orientation of the plane and is always assumed to
be normalized, e} + €2 +¢2 = 1. Embedding R? in R* as hyperplane z, = 0, we map
each plane e to the hyperplane E = ¢ (e), defined by the homogeneous coordinates

F = (60,61,62,63,1). (21)

Note that the euclidean angle of E and IR® equals 7 /4. A sphere with midpoint
m and signed radius r is represented by the point (m1,mz2,m3,r) in R* This
four-dimensional model of Laguerre geometry is called cyclographic model.
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If more emphasis is on planes rather than cycles, one might be interested in a
model where planes appear as points. This can easily be done by applying a duality
6 : R** - R* (Blaschke map),

6(E) = (1,e1,e2,e3,¢€0). (2.2)

The set of hyperplanes E is mapped to points contained in a hypercylinder A ¢ R*
with equation A : 2} +23+7% = 1. In this Blaschke model, Laguerre transformations
are seen as projective maps which preserve A.

Finally, we obtain an affine space (appropriately extended) as model of Laguerre
space. For that, let w be the generator line of A containing the point w(0,0,1,0).
Furthermore, let R® be the hyperplane z3 = 0 in R*; we use coordinate functions
Y1 = T1,Y2 = T2,Yy3 = T4 in it. Applying the ’stereographic’ projection o : A —w —
R’ with center W to the cylindrical model, we get a map from planes e with unit
normal # (0,0, 1) to points in R’ via

godo((e) = 1 ’_163 (e1,e2,€0). (2.3)

Interpreting cycles as sets of tangent planes, we may state an important well-known
result.

Lemma 2.1. The set of tangent planes of a cycle ¥ is mapped with coé0( to the
set of points of a paraboloid of revolution or a plane ¥ satisfying

U 2y3 + (yf + yg)(r +m3) +2y1my + 2yamae +r —m3 = 0. (2.4)

This can be proved by straightforward calculation.

So far, planes with unit normal (0,0, 1) do not have an image point in R®. One
therefore forms the so—called isotropic conformal closure I® := R* UR of R® and
an extended map

A:=50é60¢,

which maps the plane (eg,0,0,1) onto the real number e;. To fix the problem
of missing images of exceptional planes in Lemma 2.1, we have to extend the
paraboloids ¥ by r + mj3, which equals 0 for a plane ¥. The resulting model
of Laguerre space, where planes are represented as points and cycles appear as
paraboloids or planes, is called isotropic model. The transformation A describes
the change from the standard model to the isotropic model.

In I®, ys—parallel lines and planes (called isotropic lines and planes) need a
special treatment. The points of isotropic lines represent parallel planes. Non-
isotropic lines as well as ellipses, whose projection onto y; = 0 are circles, and
parabolas with isotropic axis are called isotropic Méobius circles. They may be
obtained as intersection of 2 surfaces (2.4) and therefore are the A-image of the



278 Martin Peternell and Helmut Pottmann

common tangent planes of 2 cycles, i.e. the planes of a pencil or the tangent planes
of a cone of revolution. This also shows that isotropic planes (as well as isotropic
cylinders through the other isotropic Mébius circles) represent planes parallel to the
tangent planes of a cone of revolution, that may degenerate to a pencil.

In the isotropic model, Laguerre transformations are seen as so—called isotropic
Mobius transformations. We just mention two special cases. For a translation in
the standard model, represented in plane coordinates by (e, ..., es) — (eo + ae; +
bez + ces, ey, ez, e3), we obtain in I3

c

(y1,92,3) = (y1,92,¥s + 091 + by + 5(u] + 95 — 1)). (2.5)

A dilatation (eo,...,e3) — (e + d, e1, €2, e3) appears as isotropic Mébius transfor-
mation J

(v1,92,98) = (y1, 92,95 + 57 + 13 +1)). (2.6)

For more details on Laguerre geometry, we refer the reader to Benz [3], Blaschke
[4] and Cecil [5].

§3. A Laguerre Geometric Approach to PH Surfaces

A surface ® in R? is a PH surface iff it possesses a rational parametric representation
s(u,v) = (s1(u,v), sa(u,v), s3(u,v)) such that the field of unit normal vectors n(u,v)
is rational in u and v. Then, all its offsets sq = s + dn are rational.

We now view @ as set of its oriented tangent planes. They are oriented with n
and their plane coordinates are rational functions,

(60, vy 63) = (—n131 — Ng282 — N3s3, Ny, N2, 713). (31)

Applying the transformation 6 o ¢, we obtain a rational 2-surface in the Blaschke—
cylinder A. Conversely, if a rational 2-surface in A is given, (60¢)™! maps it onto a
PH surface ®. Laguerre transformations appear as projective maps in the Blaschke

model and projective maps preserve the rationality of a surface. This proves the
following result.

Theorem 3.1. Laguerre transformations map PH surfaces (viewed as sets of ori-
ented tangent planes) onto PH surfaces.

The stereographic projection o defines a bijective map between rational sur-
faces in A and rational surfaces in the isotropic model I*, which gives us a simple
construction of PH surfaces.

Theorem 3.2. The geometric transformation A~!, which describes the change
from the isotropic model of Laguerre space to the standard model, maps arbitrary
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rational surfaces onto PH surfaces. All non-developable PH surfaces may be ob-
tained in this way.

Note that surfaces ® with a one-parameter set of tangent planes (developable
PH surfaces) correspond to rational curves ¥ C I3.

A further degeneracy should be pointed out. An isotropic line is mapped via
A~! onto a pencil of parallel planes. Hence, a rational cylinder ¥ with isotropic
generators belongs to a 2-parameter set of planes that touch a rational curve at
infinity. Moreover, if the rational surface ¥ possesses a real curve along which
it is touched by isotropic lines (occluding contour for ys—parallel projection), the
corresponding surface ® contains a real curve at infinity.

Let us assume that ¥ is the graph surface of a bivariate piecewise rational
function defined over a triangulation in the y;,y,—plane. Then & is composed of
triangular PH patches without points at infinity and it possesses an injective Gauss
map 3(u,v) — n(u,v). If ® is regular and C?, it does not possess a change in the
sign of Gaussian curvature. Note that parabolic surface points of ® correspond to
singularities in the Gauss map and therefore to singularities in the surface .

Conversely, suppose that ¥ is regular, then ® is regular as a set of planes,
but not necessarily as a point set. Note also that Laguerre geometry cannot dis-
tinguish between a surface and its offsets (those surfaces are related by Laguerre
transformations!). But clearly, the offsets of a regular surface need not be regular.

Let ¥y, ¥, be two rational surfaces that meet at a point p with a common
non-isotropic tangent plane 7. Then ®;,®, are PH surfaces meeting with common
tangent plane A~!(p) at a common point z € R? (the point of tangency between
A~!(p) and the cycle A~}(7)). Thus, two adjacent rational patches ¥, ¥; on a
G surface are mapped onto two PH patches &, , &2 meeting with common tangent
planes along a common curve. This joint can either be smooth or like an edge of
regression (see Fig. 3). If it is smooth and ¥y, ¥, meet with G* continuity, also
®,,®, form a G* joint.

§4. Surface Design with Cyclide Patches

4.1 Parabolic Dupin cyclides as A~! images of paraboloids

We summarize some properties of parabolic Dupin cyclides which are important
for surface design with cyclide patches. Let R?® be Euclidean 3-space, IP? its pro-
jective extension. P* — R® = Q is the ideal plane at infinity. Using homogeneous
coordinates (o : 21 : z : z3), points in § are characterized by z¢ = 0.

A parabolic Dupin cyclide ® is a special rational surface of algebraic order 3.
Using an appropriate coordinate system, a homogeneous representation is

¢(u,v) = (1 +u® + v, au + (a — b)uv?, bv + (b — a)u?v, au? + bv?). (4.1)
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An implicit equation corresponding to (4.1) is
zo(bz? + az? + (a + b)z?) - z3(abz} + 22 + 22 4+ z2) = 0. (4.2)
The set of tangent planes of ® has the parametrization
P(u,v) = (—(au? + bv?),2u,2v,u? + v? — 1). (4.3)

The intersection of a parabolic Dupin cyclide & with the plane at infinity Q: zg =0
consists of the absolute conic j, which is determined by z? + z2 4+ 22 = 0 and a real
line g : z3 = 0. Further, ® contains two real lines e, f C IR® which are perpendicular
to each other and determined by the equations e : z; = 0,73 — azy = 0 and
f:.l‘g =0,:L‘3-—b.’170=0.

For a plane ¢ passing through e or f, the intersection € N & is a circle. These
circles (parameter lines in (4.1)) are principal curvature lines. Along each of the
lines e, f the tangent plane is constant, thus e, f are called parabolic lines.

There are three types of parabolic Dupin cyclides, determined by the choice of
the constants a,b. We speak of a horn cyclide for ab > 0 (Fig.1) or a ring cyclide
for ab < 0. The limit case (a = 0 or b = 0) is sometimes called thorn cyclide. The
special choice @ = b yields a sphere. Offsetting needs not preserve the type of the
cyclide, hence these types are not distinguishable within Laguerre geometry.

Fig. 1. A rational bicubic patch on a parabolic horn cyclide.

Parabolic Dupin cyclides form an eight parameter family of surfaces in IRS.
Let g € Q be the real line 2o = 0, z3 = 0. The family of parabolic Dupin cyclides
passing through ¢ has six real parameters, and will be denoted by G.
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Using a linear parameter transformation, each parabolic Dupin cyclide ® € G
admits a dual parametrization of the form

P(u,v) = (g(u,v),2u,2v,u® + v —1). (4.4)

where g(u,v) is a quadratic polynomial. A maps tangent planes of & € G to points
of the graph of a quadratic polynomial, denoted by ¥. With u = y; and v = y2 the
equation of ¥ is

1
ys = Eq(yl,yz)-

Theorem 4.1. The A~ image of the graph ¥ of a quadratic function is a parabolic
Dupin cyclide ® or a sphere.

Substituting v = ¢t and v = M + y in (4.3), the parametrization defines a
quadratic cone I'(A, ). The same substitution applied to (4.1), we obtain in general
cubic curves ¢(A, ) and T'(), p) is tangent to ® at points of c. The intersection ¢cN§
consists of one real point in g and two conjugate complex points in j. Thus c is
called cubic circle. Let k = I'N§. Then k is tangent to g and J in the points ¢N €.
This implies that I'(\, x) is a cone of revolution, and leads us to the following

Theorem 4.2. For a parabolic Dupin cyclide ® there exists a two parameter family
of cones of revolution each of which is tangent to the surface along a rational cubic
or along a circle and a line.

These properties can also be derived in I3. But note that A(®) depends on
the stereographic projection o. By our special choice of the center, only parabolic
Dupin cyclides ® € G are mapped to quadratic graph surfaces. Then, A-images
of cones I'(A, p) are non-isotropic lines or parabolas. If & ¢ G, A(®) is a rational
surface of order 4. A(T") can be any type of isotropic Mébius circle.

Remark 4.1. Along a cubic ¢ the surface normals form a constant angle with
the axis of I'(A, 1), i.e. ¢ is an isophote on the cyclide. More general isophotes
correspond to circles in the parameter plane. Then, (4.1) shows that the general
isophotes on parabolic cyclides are rational sextics. They are good candidates for
boundaries of trimmed cyclide patches, since one may apply a circular spline algo-
rithm to generate the boundary in the parameter plane.

A quadratic Bézier patch on the paraboloid ¥ over a triangle in the y; , yo—plane
yields via A~! a dual quadratic Bézier triangle on a cyclide ® with control planes
uijk. To perform the conversion from the dual to the point representation, we run
one step of the deCasteljau algorithm. This results in 3 planes that intersect in the
desired surface point,

z(r,s,t) = (ruzgeo + su110 +tugo1) X (rut10 + Suoz0 + tuer1) X (ruoer + suor: + tugoz),

where r, s,t are the barycentric coordinates and a x bx ¢ denotes the exterior product
of 3 vectors in R*. Hence, in the standard point representation the patch is repre-
sentable as a rational cubic Bézier triangle on the cyclide ®, whose control points
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follow immediately from the formula above. Analogously, parallelogram domains in
the parameter plane yield rational bicubic cyclide patches (Fig. 1).

Remark 4.2. Consider the lines e and f on the cyclide (4.1) as axes of a hyperbolic
net consisting of all lines that intersect both e and f. Then pick a point ¢(u,v) ¢ e, f
on the surface, pass the unique line of the net through it and intersect it with the
plane 3 — czo = 0. One gets the point

(z1/20,22/20) = ((a — c)u, (b — c)v).

We may view the image plane as parameter plane and this shows that the map from
the surface to the parameter plane is a net projection composed with an affine map
(similarity for ¢ = (a + b)/2). This standard way to parameterize a cubic surface
(see also [26]) gives a better understanding of the geometry of the parametrization.
It is now quite obvious that (4.1), R? — &, does not reach the regular points on
the parabolic lines e, f. We can generate rational curves and surface patches on
the cyclide by projecting rational curves and surfaces with the net projection onto
it. The image of a straight line, which does not intersect e, f, is a hyperbola of the
form uv + au + Bv + v = 0 in the parameter plane and a rational quartic on the
surface. We would like to mention that a detailed investigation of rational curves
and surface patches on cyclides is currently performed by C. Maurer [17] (for special
patches, see also [26]).

Remark 4.3. The transformation A preserves principal curvature lines in the
following sense. Take a principal curvature line ¢ on a surface ® and consider the
developable surface I' touching & along c¢. Then A maps the planes of T onto the
points of an isotropic principal curvature line of the image surface ¥ of ®. Isotropic
principal curvature directions at a surface point are conjugate directions, whose
orthogonal projections onto the plane y3 = 0 are perpendicular. This result may be
proved by considering an osculating paraboloid (second order Taylor approximant )
in I3, which corresponds to an osculating parabolic cyclide in the standard model.
As an example, consider in I® the rational translational surface

\I’(u’ v) = (fl(u)v 91(’0), f2(u) = g2(v)),

with arbitrary rational functions fi, f2,91,92. Clearly, the parameter lines are
isotropic curvature lines on ¥. Thus, the transformation A~! into the standard
model yields a rational surface with rational offsets and rational principal curva-
ture lines. The principal curvature lines are isophotes and therefore planar (see [4],
P- 279). Any parameter rectangle [a,b] x [c,d] corresponds to a rational princi-
pal patch in the sense of R.R. Martin [16]. It is an interesting subject for future
research to use Laguerre geometry for generating an even larger class of rational
principal PH patches, in particular to study those of low degree. Applications in
NC milling mainly motivated the study of PH surfaces. Since curvature lines have
been proposed as good cutter paths, principal PH patches are also interesting from
a practical point of view.
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4.2 Surface Modeling

Proposition 4.3. If two parabolic Dupin cyclides ®;,®; share a rational cubic ¢
and the tangent cone of revolution I' along it, then they possess the same line at
infinity.

Proof: The intersection of ®; and ®; is an algebraic curve of order 9, which con-
tains the absolute conic j and the doubly counted cubic ¢. Therefore, the remaining
component of the intersection is a line g. The complete intersection of a parabolic
cyclide and the ideal plane 2 is the union of j and a line. By our asssumption, ®;
and ®; possess a common tangent plane (# ) at the real point at infinity U of c.
Hence, the curves at infinity of the two cyclides share a common tangent at U and
this must be the common ideal line g. W

&, and P, belong to the six parameter family G of all parabolic Dupin cyclides
passing through the line at infinity g. Hence, if we would like to construct a G*
surface composed of parabolic Dupin cyclide patches, such that the patches meet
smoothly along segments of cubic circles, we have to use patches on cyclides in the
same family G. In the isotropic model (with an appropriate center of the stereo-
graphic projection), such a surface is the graph of a piecewise quadratic function.
This suggests the following modeling technique.

Let (A;, a;) be coinciding vertices and oriented planes, considered as data el-
ements in IR®. The unit normals of «; are denoted by a;. The data must stem
from a smooth surface with a constant sign of Gaussian curvature. We describe the
construction of a G! surface, interpolating the given data. The surface is composed
of rational cubic triangular patches in parabolic Dupin cyclides.

First, a coordinate transformation of the data (A4;, a;) may be necessary. As the
‘northpole’ W is the center of the stereographic projection, the points a; in the unit
sphere $? should be situated suitably, i.e. the Gaussian image of the interpolating
surface should not contain W. This means, for example, that we are not able to
model closed convex surfaces. Note that W determines the familiy G of cyclides we
are using; they all contain the line at infinity 29 = 0,23 = 0.

A maps the elements (4;, a;) to elements (B;, §;), where B; = A(a;) is a point
in I®. Interpreting A; as cycle, A maps it to a paraboloid of revolution or plane
(2.4). Then B; is the tangent plane to A(A;) at B;.

Let b; be the normal projection of B; onto y3 = 0. We triangulate the vertices
bi, and then interpolate the data (B;, 3;) with the graph of a piecewise quadratic
function. For that, Powell-Sabin elements [11,22] can be used. Although the
isotropic model depends on the choice of the origin, our result will be indepen-
dent of it. This follows from (2.5), which shows that a translation in design space
will ’add’ a quadratic function to the surface ¥ in I3. Translational invariance is
now achieved by the quadratic precision of Powell-Sabin interpolants. Similarly,
(2.6) shows that the method is invariant under offsetting: offsetting the data and
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Fig. 2. Convex surface modelled with parabolic Dupin cyclide patches.

then constructing the interpolating surface yields the offset to the interpolant of the
original data.

An example of the modeling technique based on Powell-Sabin 6-splits is shown
in Figure 2. Here, the patches meet with G! continuity. As noted earlier, it is
possible that although the patches share boundary curves with common tangent
planes, the transition is not smooth, but forms a rigde (see Figure 3).

Fig. 3. The singularity problem.
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Our modeling technique offers more flexibility than existing design schemes
based on Dupin cyclides, although we use just cyclides of order 3. Of course, there
are still the restrictions mentioned above. Some of them may be eliminated in
future research. For example, the freedoms in constructing the microtriangles of a
Powell-Sabin element may be used to apply a variational technique with an energy
functional that serves to regularize the patches. However, smooth surfaces with
vanishing Gaussian curvature along curves other than straight lines can never be
modeled with parabolic Dupin cyclides.

In summary, the paper shows that appropriate geometric transformations can
help to solve advanced geometric design problems with known approximation tech-
niques. This has not yet been fully explored and seems to be a promising direction
for future research.
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