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Abstract. Motivated by the design of flexible nets, we classify all nets of
arbitrary size m × n that admit a continuous family of area-preserving
Combescure transformations. There are just two different classes. The
nets in the first class are special cases of cone nets that have been re-
cently studied by Kilian, Müller, and Tervooren. The second class consists
of Kœnigs nets having a Christoffel dual with the same areas of corre-
sponding faces. We apply isotropic metric duality to get a new class of
flexible nets in isotropic geometry. We also study the smooth analogs of
the introduced classes.
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1. Introduction

The motivation for our paper originates from the search for flexible quadri-
lateral meshes. Considering the faces as rigid bodies and the edges where two
faces meet as hinges, such meshes allow for continuous flexion. In other words,
they are mechanisms. Very recently, there has been growing interest in this
area, with applications in rigid origami and transformable design [1–9]. In our
paper, we suggest a new approach to the problem.

We restrict to quad meshes of regular combinatorics and call them (dis-
crete) nets in the following. The flexibility is interesting to study, starting
from nets with 3×3 faces. The flexible 3×3 Q-nets (meshes with planar faces)
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have been classified in a seminal paper by Izmestiev [10], which revealed a
big variety of types. Well-known examples of flexible Q-nets of arbitrary size
m × n are the Voss nets and T-nets, treated in detail by R. Sauer [11]. Very
recently, Nawratil [12] presented another special class of flexible Q-nets which
he calls P-nets. They may be seen as a generalization of rotational nets and
can be easily designed but cannot provide a large variety of shapes. Further
important recent progress is due to He and Guest [13], who have been able
to patch other types of 3 × 3 nets together to larger flexible Q-nets. However,
this is not yet a method for the design of flexible structures since the result is
hardly predictable by the provided generation process.

In view of the difficulties that arise in Euclidean geometry, we simplify
the problem and turn our interest to isotropic geometry, which may be seen
as a structure-preserving degeneration of Euclidean one. The examples found
in isotropic geometry can then be used as a good initialization to construct
Euclidean ones via numerical optimization. This approach has been (implic-
itly) used since as early as the work [14] by Müntz from 1911, who solved
the Plateau problem for Euclidean minimal surfaces in a quite general setup
by deformation of isotropic minimal surfaces (graphs of harmonic functions).
Another successful example of a structure-preserving degeneration is tropi-
cal geometry.

The geometry in isotropic 3-space I3 is based on a 6-parametric group of
affine transformations in R

3 which preserve the isotropic semi-norm ‖(x, y, z)‖i

:=
√

x2 + y2. This geometry has been systematically developed by K. Strube-
cker [15–18]. A detailed treatment is found in the monograph by H. Sachs [19].
The geometry in I3 is not as degenerate as it may appear by just looking at
the metric. One can come up with so-called replacing invariants and obtain
beautiful counterparts to Euclidean results. For example, one finds a definition
of isotropic Gaussian curvature Ki of a surface that has properties very simi-
lar to the familiar Euclidean counterpart. However, pursuing the Riemannian
approach based on the isotropic metric, Ki would vanish everywhere. Isotropic
curvature theory of surfaces defines a counterpart to the Euclidean shape op-
erator via an isotropic Gauss map that maps a surface via parallel tangent
planes to the parabolic isotropic unit sphere S2

i : 2z = x2 +y2. If the surface is
a function graph z = f(x, y), then Ki is the determinant of the Hessian, i.e.,
Ki = fxxfyy − f2

xy.

Since flexible nets may be seen as discrete versions of continuous isometric
deformations of a surface, one needs a proper definition of isometric surfaces
in I3, which has been missing until very recently. Requiring the preservation
of the lengths of surface curves and of isotropic Gaussian curvature during an
isometric deformation, one obtains the desired non-degenerate analog to the
Euclidean case [20]. Unlike Euclidean geometry, isotropic geometry possesses a
metric duality realized via the polarity δ with respect to S2

i . It has been shown
[20] that δ transforms a pair of isometric surfaces in I3 to a pair of surfaces
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Figure 1. A sequence of deformations of a Q-net from class
(i) in R

3. Corresponding edges are parallel, and corresponding
faces have equal areas. For a net from class (i), the two faces of
each 1 × 2 sub-net or each 2 × 1 sub-net are affine symmetric.
See Theorem 9

which are related by an area-preserving Combescure transformation. In the
smooth setting, two surfaces f(u, v) and f+(u, v) are related by a Combescure
transformation (C-trafo), if corresponding tangent vectors fu, f+

u and fv, f+
v

of parameter lines are parallel.
C-trafos play a fundamental role in discrete differential geometry [21].

Two Q-nets are related by a C-trafo if corresponding edges are parallel. Dual
to the search for flexible Q-nets in I3, we have to find all Q-nets which allow
for a continuous family of area preserving C-trafos. In the following, we denote
such Q-nets as deformable. See Fig. 1.

This problem is one of affine geometry in R
2. Indeed, if two Q-nets are

related by a C-trafo, corresponding faces are parallel, and we require that they
have the same area. This implies immediately the following basic fact. If two
Q-nets in R

d, where d ≥ 3, are related by an area-preserving C-trafo, the same
is true for their images under any parallel projection into a plane. Conversely,
any area preserving C-trafo in the plane can be lifted to R

d in infinitely many
essentially different ways. We just add d − 2 coordinates to the vertices of two
transversal discrete parameter lines of one Q-net in the plane and complete
the lifted nets via parallelism.
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After having classified all deformable Q-nets in I3, we will apply metric
duality and obtain all flexible Q-nets in I3. Then, our goal is to transform these
nets with a numerical optimization algorithm to Euclidean flexible Q-nets. The
latter is, however, the subject of a future publication.

1.1. Pointers to the Classical Literature

Area preserving maps between surfaces is a well-studied subject of classical
differential geometry and cartography. In the latter case, the focus is on maps
from the sphere to the plane.

Already the seemingly simple cases of area preserving maps on the sphere
S2 or in the Euclidean plane R

2 possess a remarkable theory that reaches into
non-Euclidean geometries. G. Fubini [22] found all area-preserving maps on
S2 via the so-called kinematic mapping of oriented lines L in elliptic 3-space
E3 to pairs (Ll, Lr) of points (left and right image) on S2. For details on this
map, which uses Clifford parallelism in E3, we refer to [23,24]. The normal
lines of a surface Φ ⊂ E3 get mapped to a left and right image domain Φl

and Φr, respectively, which are related by an area preserving map. All smooth
area-preserving maps on S2 can be generated in this way.

Only after Fubini’s result a similar construction of area preserving maps
in the plane has been discovered. Based on initial work by G. Scheffers [25],
K. Strubecker [18] developed the theory of the so-called paratactic map of
contact elements C in isotropic 3-space I3 to pairs of points (Cl, Cr) in the
plane. A contact element is defined as a pair consisting of a point and an
incident plane. The paratactic map is one application of the geometry in I3.
It possesses limits of Clifford translations which generate the paratactic map.
Remarkably, if the contact elements are formed by the points plus tangent
planes of a surface Φ ⊂ I3, the left and right images in the plane are related by
an area preserving map. A special property related to our work is the following:
Mapping the asymptotic net of a negatively curved surface Φ results in two
nets related by a C-trafo. Hence, a negatively curved surface Φ generates an
area preserving C-trafo Φl �→ Φr between two nets in R

2. Note that we are
searching for a continuous family of nets related by area preserving C-trafos.

Another relevant result is Minkowski’s theorem on the existence and
uniqueness of a convex polytope with given directions and areas of faces. The
polytope surface can be viewed as a mesh (with combinatorics more complex
than a square grid), and then the theorem implies that the mesh admits no
non-congruent area-preserving C-trafos. Via the metric duality δ, this trans-
lates to isotropic Cauchy’s theorem: a mesh in I3 whose metric dual is the
surface of a convex polytope is not flexible.

1.2. Contributions and Overview

Our contributions in this paper are as follows.
In Sect. 2, we provide a classification of all deformable nets with 2 × 2

faces (3×3 vertices), since an m×n net is deformable if all 2×2 sub-nets are,
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as we show later. This is in agreement with the fact that in I3 (as in Euclidean
R

3) flexible Q-nets require flexible sub-nets of 3 × 3 faces, where only the
4 vertices of the inner face matter. Remarkably, there are just two different
classes. See Theorem 1. The main part of the section presents the proof of the
classification. It amounts to discussing a certain system of quadratic equations
and identifying the cases where it has a one-parametric real solution. To keep
our arguments elementary, we avoid tools such as complex projective space
and resultants.

In Sect. 3, we classify deformable m × n nets and show how to build
them from boundary data. See Theorem 9. All 2 × 2 sub-nets turn out to be
of the same class. For class (i), the resulting nets are special cases of cone
nets that have been recently studied by Kilian, Müller, and Tervooren [26].
Such nets also appeared in free-form architectural glass structures with planar
quadrilateral (in fact trapezoidal) faces [27]. For class (ii), the resulting nets
are special cases of well-known Kœnigs nets [21]. The class consists of nets
having a Christoffel dual with the same areas of corresponding faces. While
class (i) can yield visually pleasing discretizations of smooth deformable nets
(see Fig. 1), class (ii) almost always exhibits the opposite behavior and a
crumpled appearance (see Figs. 2 and 3).

This fact has a large impact when turning to smooth analogs in Sect. 4.
The first class (i) yields smooth double cone nets where one family of cones are
cylinders. The resulting surfaces are generalizations of translational surfaces,
called scale-translational surfaces in architecture [27]. Ordinary translational
surfaces appear as the only smooth analogs of the second class (ii). They
constitute a special case of the smooth analogs of (i). Their metric duals in I3

are the isotropic counterparts of Voss nets.
In Sect. 5, we conclude the paper with a few remarks on the dual flexible

Q-nets whose detailed study and possibly conversion to Euclidean flexible Q-
nets through optimization shall form the content of a separate publication.
The nets of class (i) are instances of or closely related to multi-conjugate nets
in the sense of Bobenko et al. [28]. They are also of interest in architectural
applications, as discussed in [29,30]. Those of class (ii) appear crumpled, which
is a frequent effect in Euclidean flexible Q-nets such as Miura origami and
generalizations (see, e.g., [13]).

2. Deformable 2 × 2 Nets

In this section, we introduce basic notions and characterize all deformable 2×2
nets, i.e., nets that admit a family of non-congruent area-preserving Combes-
cure transformations. We state the Classification Theorem 1 in Sect. 2.1,
discuss the geometry of deformable nets in Sect. 2.2, and give the proof in
Sect. 2.3.
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Figure 2. A sequence of deformations of a net from class (ii)
in R

3. Any two neighboring faces have equal so-called opposite
ratios with respect to the common edge. See Sect. 2.1 and
Theorem 9

Figure 3. A sequence of deformations of a 9 × 9 net from
class (ii) in R

3. See Theorem 9

2.1. Statement of the Classification

Let us introduce basic notions. By an m × n net we mean a collection of (m +
1)(n+1) points Pij ∈ R

d indexed by two integers 0 ≤ i ≤ m and 0 ≤ j ≤ n (i.e.,
a map {0, . . . , m}×{0, . . . , n} → R

d), such that Pij , Pi+1,j , Pi+1,j+1, Pi,j+1 are
consecutive vertices of a convex quadrilateral for all 0 ≤ i < m and 0 ≤ j < n.
See Fig. 4. The latter quadrilaterals are called faces, and their sides are called
edges. Faces and edges are labeled, i.e., equipped with an assignment of indices
to their vertices (see [31, §2] for a detailed discussion of labeled polygons). An
m × n net has mn faces, thus the name.

Edges or faces spanned by points with the same indices in two m × n
nets are called corresponding. Two m × n nets are parallel or Combescure
transformations of each other if their corresponding edges are parallel. Two
m × n nets are congruent, if there is an isometry of R

d taking each point of
the first net to the point of the second net with the same indices.

We come to the main notion of the paper.

Definition 1. (See Fig. 4) An m×n net is deformable if contained in a contin-
uous family of pairwise non-congruent parallel m×n nets with the same areas
of corresponding faces. Any member of this family is called a deformation of
the initial net.
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Figure 4. A 2 × 2 net (solid lines) and its deformation
(dashed lines). Corresponding edges are parallel and corre-
sponding faces (colored with the same color) have equal areas.
See Definition 1

Figure 5. Two classes of deformable 2×2 nets introduced in
Theorem 1. Left: class (i). Quadrilaterals in each pair 1, 1′ and
2, 2′ are affine symmetric, i.e., there exist two affine maps: one
maps 1 to 1′ and the other maps 2 to 2′, keeping the points
of the common sides fixed. Right: class (ii). Two pairs of red
triangles 1, 2 and 1′, 2′ have equal area ratios. This property
holds for other pairs of triangles with the same color

Figure 6. The opposite ratio of the quadrilateral ABCD
with respect to the side AB is the ratio of the areas of the
colored triangles. See Proposition 8 for equivalent definitions
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To state the classification theorem, we need a convention and two auxil-
iary notions.

The points of an m × n net need not be distinct. To deal with coincident
points, we have labeled faces and edges. Faces or edges with different labels
are viewed as distinct even if they coincide as subsets of R

d. In particular, a
common edge of two faces must have common labels with both.

A pair of quadrilaterals in R
d with a common side is called affine sym-

metric with respect to the common side if there is an affine map taking the
first quadrilateral to the second one and keeping the points of the common
side fixed. (Labels, if any, are ignored.) See Fig. 5(left) for an illustration.

The ratio of the areas of triangles AQB and CQD in a quadrilateral
ABCD with the diagonals meeting at Q is called the opposite ratio of the
quadrilateral ABCD with respect to the side AB. See Figs. 5(right) and 6.
Notice that if two quadrilaterals are affine symmetric with respect to the com-
mon side, then their opposite ratios with respect to all corresponding sides are
equal.

Theorem 1. A 2×2 net is deformable if and only if at least one of the following
conditions holds:

(i) the four faces split into two pairs that are affine symmetric with respect
to the common edges;

(ii) each pair of faces with a common edge has equal opposite ratios with
respect to that edge.

The reader interested in the proof of the theorem can proceed directly to
Sect. 2.3, and now we discuss geometric properties of resulting classes (i)–(ii)
of deformable 2 × 2 nets.

2.2. Geometric Properties

There are equivalent descriptions of classes (i) and (ii), providing additional
insight and simple ways to check conditions (i) and (ii) of Theorem 1 for a
given net.

2.2.1. Class (i). Let us start with class (i) and show that it indeed consists of
deformable nets.

Example 1. A 2 × 2 net whose faces split into two pairs that are affine sym-
metric with respect to the common edges is deformable.

Proof. See Fig. 4 and enumerate the faces as shown there. Assume that both
pairs of faces f1, f2 and f3, f4 are affine symmetric with respect to the common
sides.

Fix the common vertex P11 of all the faces. Move the point P10 of the
net slightly along the line P11P10 to a new position P10(t). On the resulting
segment P11P10(t), construct a new quadrilateral f1(t) with the same area and
the same side directions as f1. Consider the affine symmetry taking f1 to f2,
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and apply it to f1(t). We get a quadrilateral f2(t) with the same area and the
same side directions as f2 because an affine map preserves the parallelism of
lines and the ratio of areas. Also, f1(t) and f2(t) share a common side because
the points of the line P11P01 are fixed by the affine symmetry.

Analogously construct a quadrilateral f4(t) and its image f3(t) under the
affine symmetry taking f4 to f3. Then both pairs f4, f4(t) and f3, f3(t) have
parallel sides and equal areas, and f3(t) and f4(t) share a common side. It
remains to note that f2(t) and f3(t) also share a common side: indeed, both
affine symmetries take P10 to P12 and preserve the ratio P11P10 : P11P10(t),
hence they take P10(t) to the same point P12(t). Thus f1(t), f2(t), f3(t), f4(t)
together constitute a deformation of our net. �

Let us introduce a geometric characterization of affine symmetric quadri-
laterals.

Proposition 2 (See Fig. 7). Two convex planar quadrilaterals ABCD and
ABC ′D′ in R

d, where C,D,C ′,D′ are non-collinear, are affine symmetric
with respect to their common side AB, if and only if CC ′ ‖ DD′ and the lines
AB, CD, C ′D′ are concurrent or parallel. Moreover, if the two quadrilaterals
are not coplanar, then the latter condition and the assumption that C,D,C ′,D′

are non-collinear can be dropped.

Proof. The ’only if ’ part. Let ABCD and ABC ′D′ be affine symmetric. Then
there is an affine map that maps C,D to C ′,D′, respectively, and preserves
the points of the line AB. The map takes the intersection point AB ∩ CD,
if it exists, to AB ∩ C ′D′, which means that AB,CD,C ′D′ are parallel or
concurrent. In particular, C 
= C ′ and D 
= D′, otherwise C,D,C ′,D′ are
collinear because ABCD is convex. Since the affine map preserves ratios of
parallel segments, by the Thales theorem, we get CC ′ ‖ DD′.

The ’if ’ part. Consider the affine map that maps the triangle ACB to
AC ′B. This map takes the line CD to C ′D′ because AB,CD,C ′D′ are con-
current or parallel. Since CC ′ ‖ DD′ and C,D,C ′,D′ are non-collinear, by the
Thales theorem, it follows that D is taken to D′, and we are done. �

As a consequence, we get the following geometric characterization of
class (i).

Proposition 3 (See Fig. 8). Consider a 2 × 2 net with points Pij, where 0 ≤
i, j ≤ 2, such that each of the quadruples P00, P10, P02, P12 and P10, P20, P12, P22

is not collinear. The pairs of faces

(P00P10P11P01, P01P11P12P02) and (P10P20P21P11, P11P21P22P12)

are affine symmetric with respect to their common edges if and only if P00P02 ‖
P10P12 ‖ P20P22 and the lines in each of the triples P00P10, P01P11, P02P12 and
P10P20, P11P21, P12P22 are parallel or concurrent. Moreover, if no two faces are
coplanar, then the latter two conditions can be dropped.
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Figure 7. Properties of two affine symmetric quadrilaterals.
Blue lines are parallel and red lines are either concurrent or
parallel. See Proposition 2

Figure 8. A geometric characterization of deformable 2 × 2
nets of class (i) in Theorem 1. Blue lines are parallel. Red and
orange triples of lines are either concurrent or parallel. See
Proposition 3

We shall see that each net of class (i) is a Kœnigs net. For Kœnigs nets, the
condition that both triples P00P10, P01P11, P02P12 and P10P20, P11P21, P12P22

are parallel or concurrent implies that the triple P00P02, P10P12, P20P22 is par-
allel or concurrent (N. Affolter and A. Fairley, private communication). How-
ever, this does not yet imply that the net belongs to class (i) because the latter
triple needs to be parallel.

2.2.2. Class (ii). The geometric description of class (ii) is less straightforward.
To motivate it, we first briefly discuss a necessary condition for a 2 × 2 net
to be deformable. This condition is actually the “infinitesimal deformability”
studied in [20, §6.2]; cf. [32, §2.2] and [33, §2].

Let Pij(t) be a deformation of a 2×2 net Pij , where 0 ≤ i, j ≤ 2. Identify
points in R

d with vectors. Assume that the derivatives P ′
ij(0) exist and do not

all coincide. Consider the deformations Pij(t)Pi+1,j(t)Pi+1,j+1(t)Pi,j+1(t) of a
particular face. These quadrilaterals have parallel sides and equal areas for all
t. In particular, the derivative of the area at t = 0 vanishes. By a known com-
putation [34, Theorem 13 and Eq. (3)], the latter is equivalent to quadrilaterals
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Figure 9. Dual quadrilaterals. Corresponding sides (with
the same color) are parallel and non-corresponding diagonals
(also with the same color) are parallel. See Sect. 2.2.2

Figure 10. Two 2× 2 nets that are Christoffel duals. Corre-
sponding faces (of the same color) are dual

Pij(0)Pi+1,j(0)Pi+1,j+1(0)Pi,j+1(0) and P ′
ij(0)P ′

i+1,j(0)P ′
i+1,j+1(0)P ′

i,j+1(0) be-
ing dual, i.e., having parallel corresponding sides and parallel non-correspon-
ding diagonals (see Fig. 9):

Pij(0)Pi+1,j+1(0) ‖ P ′
i+1,j(0)P ′

i,j+1(0),

Pi+1,j(0)Pi,j+1(0) ‖ P ′
ij(0)P ′

i+1,j+1(0).

This holds for all faces, hence points P ′
ij(0) form a 2×2 net, and the nets

Pij and P ′
ij(0) are Christoffel duals, i.e., their corresponding faces are dual.

See Fig. 10. A net admitting a Christoffel dual is called a Kœnigs net. We
conclude that an (“infinitesimally”) deformable 2 × 2 net is a Kœnigs net.

Several geometric characterizations of Kœnigs nets are known. See Fig. 11.
A 2 × 2 net with the vertices Pij , where 0 ≤ i, j ≤ 2, is a Kœnigs net, if and
only if

P10Q00

Q00P01
· P01Q01

Q01P12
· P12Q11

Q11P21
· P21Q10

Q10P10
= 1, (1)
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Figure 11. Three dashed lines for a deformable 2×2 net are
either concurrent or parallel

where Qij := PijPi+1,j+1 ∩ Pi+1,jPi,j+1 for 0 ≤ i, j ≤ 1 [21, Theorem 2.25].
If no three points among P01, P12, P21, P10 are collinear, then (1) is equiva-
lent to the three lines Q00Q10, P01P21, Q01Q11 being concurrent or parallel
[21, Theorem 9.12]. If the points P01, P12, P21, P10 are not coplanar, then the
latter condition is equivalent to the coplanarity of Q00, Q01, Q10, Q11 [21, The-
orem 2.26].

Proposition 4. A 2 × 2 net satisfying one of conditions (i)–(ii) of Theorem 1
is a Kœnigs net.

We give a direct elementary proof relying neither on infinitesimal de-
formability nor duality.

Proof. Enumerate the faces containing the points Q00, Q01, Q11, Q10 in the
listed order so that the indices are cyclic modulo 4. Denote by r(i, j) the
opposite ratio of the i-th face with respect to its common edge with j-th
face. Then P10Q00/Q00P01 =

√
r(1, 4)/r(1, 2) by a direct computation (see (5)

below). Substituting similar expressions for the other factors in (1), we rewrite
it in an equivalent form:

r(1, 2)r(2, 3)r(3, 4)r(4, 1)
r(1, 4)r(2, 1)r(3, 2)r(4, 3)

= 1. (2)

If the net is from class (i), then r(i, j − 1) = r(i − 1, j) either for all
even i, j or for all odd i, j, because affine symmetric quadrilaterals have equal
opposite ratios with respect to corresponding edges.

If the net is from class (ii), then r(i, j) = r(j, i) for all i, j different by 1.
In both cases, the numerator and the denominator of (2) cancel out

completely, as required. �

To describe class (ii) geometrically, we return to the duality. Notice that
a Christoffel dual of a 2 × 2 net is one of its Combescure transformations.
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Now we show the following: if this particular Combescure transformation is
area-preserving, then there is a whole family of area-preserving Combescure
transformations, and this happens exactly for nets from class (ii).

Proposition 5. If a 2 × 2 net Pij (0 ≤ i, j ≤ 2) has a Christoffel dual P ∗
ij

(0 ≤ i, j ≤ 2) with the same areas of corresponding faces, then

Pij(t) = Pij cosh t + P ∗
ij sinh t, t ∈ [0, ε], 0 ≤ i, j ≤ 2, (3)

is a family of area-preserving Combescure transformations for sufficiently small
ε > 0.

Proof. Clearly, the nets Pij , P ∗
ij , and Pij(t) are parallel. Let f , f∗, and f(t) be

their corresponding faces. Dual quadrilaterals f and f∗ have opposite orien-
tation, hence opposite oriented areas Area(f∗) = −Area(f). Their mixed area
Area(f, f∗) = 0 by [34, Theorem 13]. Then by [34, Eq. (3)], we get

Area(f(t)) = Area(f) cosh2 t + Area(f∗) sinh2 t + 2Area(f, f∗) cosh t sinh t =
= Area(f) = const.

�

In this construction, opposite ratios arise as follows.

Proposition 6. If two dual convex quadrilaterals f and f∗ have equal areas,
then the ratio of their corresponding sides e and e∗ equals the square root of
the opposite ratio of f with respect to e.

Proof. (Cf. [21, Proof of Lemma 2.20].) Let A,B,C,D be consecutive vertices
of f so that AB = e, let Q be the intersection point of the diagonals, e1 and
e2 be some vectors along the diagonals,

−→
QA = αe1,

−−→
QB = βe2,−−→

QC = γe1,
−−→
QD = δe2.

Since f is convex, we may assume that αβγδ = 1 without loss of generality.
Construct a quadrilateral A∗B∗C∗D∗ with the intersection of the diago-

nals Q∗ by setting
−−−→
Q∗A∗ = −e2

α
,

−−−→
Q∗B∗ = −e1

β
,

−−−→
Q∗C∗ = −e2

γ
,

−−−→
Q∗D∗ = −e1

δ
[21,Eq. (2.28)].

The resulting quadrilateral is dual to f and has the same area because αβγδ =
1. Since the quadrilateral dual to a given one is unique up to scaling and
translation [21, Lemma 2.20], we may assume that f∗ = A∗B∗C∗D∗ so that
e∗ = A∗B∗.

By the similarity of ABQ and A∗B∗Q∗, the ratio of e and e∗ equals
AB/A∗B∗ = |αβ|. The opposite ratio of f with respect to e is |αβ|/|γδ| =
|αβ|2, as required. �
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As a consequence, we get the following characterization of class (ii). See
Figs. 5(right) and 10.

Proposition 7. For a 2 × 2 net, the following two conditions are equivalent:
• each pair of faces with a common edge has equal opposite ratios with

respect to that edge;
• the net has a Christoffel dual with the same areas of corresponding faces.

Proof. Each face has a dual quadrilateral of the same area [21, Lemma 2.20].
Performing a central symmetry, if necessary, we may assume that for any edge
of the form PijPi+1,j , the corresponding oriented side of the dual quadrilateral
has the same direction, and for any edge of the form PijPi,j+1, the correspond-
ing oriented side has the opposite direction. See Fig. 9. The resulting dual
quadrilaterals are unique up to translation. By Proposition 6, their oriented
sides fit to compose a whole Christoffel dual net if and only if the required
opposite ratios are equal. �

Propositions 5 and 7 show that class (ii) indeed consists of deformable
nets.

2.2.3. Opposite Ratios. Let us discuss further properties of the opposite ra-
tio. See Fig. 6. First, the opposite ratio is the product of the diagonal-ratios
[AQ/QC] and [BQ/QD] studied in [35]:

Proposition 8. If the rays BC and AD extending the sides of a convex quadri-
lateral ABCD meet at a point S and the diagonals meet at Q, then the opposite
ratio of ABCD with respect to AB is

Area(AQB)
Area(CQD)

=
AQ · BQ

CQ · DQ
=

AS · BS

CS · DS

=
Area(ASB)
Area(CSD)

=
(

1 − Area(ABCD)
Area(ABS)

)−1

. (4)

Proof. The second equality follows from Menelaus’ theorem for the triangles
ADQ and BCQ:

AS

DS
=

BQ

BD
· CA

CQ
and

BS

CS
=

AQ

AC
· DB

DQ
.

The other three equalities are straightforward. �

Thus, in particular, rays BC and AD intersect if and only if this opposite
ratio is greater than 1.

Further, just like (4) expresses the opposite ratio in terms of certain length
ratios, those length ratios themselves can be expressed in terms of opposite
ratios:

AQ

CQ
=

√
Area(AQB)
Area(CQD)

· Area(DQA)
Area(BQC)
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Figure 12. Notation used throughout Sect. 2.3 (left) and the
proofs of Lemmas 1–2 (right)

and
BQ

DQ
=

√
Area(AQB)
Area(CQD)

· Area(BQC)
Area(DQA)

. (5)

This shows that two opposite ratios of a quadrilateral with respect to two
adjacent sides determine the quadrilateral uniquely up to affine transforma-
tions: given vertices A,B,C, the first equation uniquely determines Q, and the
second one uniquely determines D. We arrive at the following corollary.

Corollary 1. There exists a unique convex quadrilateral ABCD with given
(non-collinear) vertices A,B,C and given (positive) opposite ratios with re-
spect to the sides AB and BC.

This suggests the following construction of deformable 2 × 2 nets. A pair
of opposite faces P00P01P11P10 and P11P12P22P21 can be prescribed arbitrarily
as long as the triples P01, P11, P12 and P10, P11, P21 are non-collinear. Then the
remaining pair of faces is uniquely determined by condition (ii) of Theorem 1,
leading to a unique 2 × 2 net from class (ii). Analogously, the pair of opposite
faces leads to at most two 2 × 2 nets from class (i), depending on which pairs
of faces are affine symmetric.

2.3. Proof of the Classification

First, we reduce the classification of deformable 2 × 2 nets to solving a system
of quadratic equations. We need the following notation. See Fig. 12 (left).

The faces of a 2 × 2 net are denoted by f1, f2, f3, f4 so that fi and fi−1

have a common edge for i = 1, 2, 3, 4, and the indices are cyclic modulo 4. The
common vertex of all the faces is denoted by O, and the common edge of fi

and fi−1 is denoted by OAi. The vertex of fi other than O,Ai, Ai+1 is denoted
by Bi.
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The simple ratio of a quadrilateral ABCD with respect to the oriented
side AB is

⎧
⎪⎨

⎪⎩

AB/RA, if the rays BA and CD intersect at a point R;
0, if AB ‖ CD;
−AB/RA, if the rays AB and DC intersect at a point R(see Fig. 6).

The simple ratios of the face fi with respect to OAi and OAi+1 are denoted
by li and mi respectively.

For two collinear vectors
−−→
AB and

−−→
CD, denote by

−−→
AB/

−−→
CD the number k

such that
−−→
AB = k · −−→CD.

Lemma 1. A 2 × 2 net is deformable if and only if the system of equations

Pi(xi, xi+1) := lix
2
i + 2xixi+1 + mix

2
i+1 − (li + mi + 2) = 0 (6)

for i = 1, 2, 3, 4 has a non-constant continuous family of real solutions
(
x1(t), . . . ,

x4(t)
)

with x1(0) = · · · = x4(0) = 1.

Remark 1. Each such family determines a family of parallel nets with
OAi(t)/OAi = xi(t).

Proof. Let us prove the following expression for the ratio of oriented areas:

Area(OA1B1A2)
Area(OA1A2)

=
l1 + m1 + 2
1 − l1m1

. (7)

Indeed, first assume that the lines OA1, OA2 intersect with A2B1, A1B1 at
some points S,R, respectively. See Fig. 12(right). Then

−−→
OA2/

−−→
OR = −m1

and
−−→
OA1/

−→
OS = −l1. By the Menelaus theorem for points A2, B1, S on the

extensions of the sides of the triangle OA1R, we get
−−→
A1R−−→
B1R

= 1 +
−−−→
A1B1−−→
B1R

= 1 +
−−→
SA1−→
OS

·
−−→
OA2−−→
RA2

= 1 − (1 + l1) · m1

1 + m1
=

1 − l1m1

1 + m1
.

Then

Area(OA1B1A2)
Area(OA1A2)

=
Area(OA1R)
Area(OA1A2)

− Area(A2B1R)
Area(OA1A2)

=
−−→
OR
−−→
OA2

−
−−→
A2R−−→
OA2

·
−−→
B1R−−→
A1R

=

= − 1
m1

− 1 + m1

−m1
· 1 + m1

1 − l1m1
=

l1 + m1 + 2
1 − l1m1

.

This proves (7) unless OA1B1A2 has a pair of parallel sides. In the latter case,
(7) is established, e.g., by a limiting argument.

Now assume that the net is deformable. Without loss of generality, as-
sume that O is fixed during the deformation. In a deformation, take the
face OA1(t)B1(t)A2(t) with the same area and the same side directions as
OA1B1A2. Denote x1(t) = OA1(t)/OA1 and x2(t) = OA2(t)/OA2. Then the
simple ratios of the face OA1(t)B1(t)A2(t) with respect to the sides OA1(t)
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and OA2(t) are l1(t) = l1x1(t)/x2(t) and m1(t) = m1x2(t)/x1(t) respectively.
Applying (7) two times, we get

l1 + m1 + 2
1 − l1m1

=
Area(OA1B1A2)
Area(OA1A2)

=
Area(OA1(t)B1(t)A2(t))

Area(OA1(t)A2(t))
· Area(OA1(t)A2(t))

Area(OA1A2)
=

=
l1(t) + m1(t) + 2
1 − l1(t)m1(t)

x1(t)x2(t) =
l1x1(t)2 + 2x1(t)x2(t) + m1x2(t)2

1 − l1m1
.

We have arrived at P1(x1(t), x2(t)) = 0. Analogously we get (6) for i = 2, 3, 4.
Conversely, given a family of solutions of (6), we construct a family of

parallel nets with the same areas of faces: the point O is fixed; the points Ai(t)
are determined by OAi(t)/OAi = xi(t). �

Conditions (i)–(ii) in Theorem 1 are restated in terms of the simple ratios
li and mi as follows.

Lemma 2. For i = 1, 2, 3, 4, we have li + 1,mi + 1, 1 − limi > 0. Two faces fi

and fi+1:

(i) are affine symmetric with respect to their common edge if and only if
li = mi+1 and li+1 = mi;

(ii) have equal opposite-ratios with respect to their common edge if and only
if

1 − mili
(1 + li)2

=
1 − mi+1li+1

(1 + mi+1)2
.

The latter two fractions are the expressions for the opposite ratios in
terms of the simple ratios.

Proof. Assume without loss of generality that i = 1.
First, we derive a useful expression for l1+1,m1+1, and 1−l1m1. Let Q1

be the intersection point of the diagonals of OA1B1A2 and let S = OA1∩A2B1

(if the latter lines are not parallel). See Fig. 12(right). Using Menelaus’ theorem
for points A2, B1, S and the triangle A1Q1O, we get

l1 + 1 =
−−→
A1O−→
OS

+ 1 =
−−→
A1S−→
OS

=
−−−→
A1A2−−−→
Q1A2

·
−−−→
B1Q1−−→
B1O

.

Notice that the resulting expression remains true, even if OA1 ‖ A2B1. Simi-
larly, we have

m1 + 1 =
−−−→
A2A1−−−→
Q1A1

·
−−−→
B1Q1−−→
B1O

.
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Substituting l1+1,m1+1 into 1−l1m1 = (m1+1)[1−(l1+1)+(l1+1)/(m1+1)],
we get

1 − l1m1 =
−−−→
A2A1−−−→
Q1A1

·
−−−→
B1Q1−−→
B1O

·
(

1 −
−−−→
A1A2−−−→
Q1A2

·
−−−→
B1Q1−−→
B1O

−
−−−→
Q1A1−−−→
Q1A2

)

=
−−−→
A2A1−−−→
Q1A1

·
−−−→
B1Q1−−→
B1O

·
−−→
Q1O−−→
B1O

·
−−−→
A1A2−−−→
Q1A2

.

In particular, m1 + 1, l1 + 1, 1 − l1m1 > 0 by the convexity.
We have analogous expressions for m2 + 1, l2 + 1, 1 − l2m2 in terms of

the point Q2 = OB2 ∩ A2A3.
(i) From those expressions, we get

m1 + 1
l1 + 1

=
−−−→
A2Q1−−−→
Q1A1

,
l2 + 1
m2 + 1

=
−−−→
A2Q2−−−→
Q2A3

,

1
m1 + 1

+
1

l1 + 1
=

−−→
B1O−−−→
B1Q1

,
1

m2 + 1
+

1
l2 + 1

=
−−→
B2O−−−→
B2Q2

.

Then (l1,m1) = (m2, l2) is equivalent to
−−−→
A2Q1−−−→
Q1A1

=
−−−→
A2Q2−−−→
Q2A3

and
−−→
B1O−−−→
B1Q1

=
−−→
B2O−−−→
B2Q2

. (8)

Consider the affine map taking the triangle OB1A2 to OB2A2. Condition (8)
means that the affine map takes A1 to A3. The latter is equivalent to OA1B1A2

and OA2B2A3 being affine symmetric.
(ii) Substituting expressions for l1 +1,m2 +1, 1− l1m1, 1− l2m2, we get

1 − m1l1
(1 + l1)2

=
−−−→
Q1A2−−−→
Q1A1

·
−−→
Q1O−−−→
Q1B1

and
1 − m2l2
(1 + m2)2

=
−−−→
Q2A2−−−→
Q2A3

·
−−→
Q2O−−−→
Q2B2

.

The right sides are equal to the opposite ratios of the quadrilaterals OA1B1A2

and OA2B2A3 with respect to their common side OA2. �

This restatement of conditions (i)–(ii) of Theorem 1 gives another proof
that they are sufficient.

Example 2. A 2 × 2 net satisfying one of conditions (i)–(ii) in Theorem 1 is
deformable. Moreover, for any edge, there is a deformation increasing its length
and a deformation decreasing it.

Proof. By Lemma 1, it suffices to construct a family of solutions of system (6).
(i) Let both pairs f1, f2 and f3, f4 be affine symmetric with respect to

the common sides. Then by Lemma 2(i) we get l1 = m2, l2 = m1, l3 = m4,
l4 = m3. For m1,m3 
= 0, we get the following family:

x1(t) = 1 + t, x2(t) =
−(1 + t) +

√
(1 + t)2(1 − l1m1) + m1(l1 + m1 + 2)

m1
,
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x3(t) = 1 + t, x4(t) =
−(1 + t) +

√
(1 + t)2(1 − l3m3) + m3(l3 + m3 + 2)

m3
.

The expressions under the roots are positive for small enough |t| because for
t = 0 they equal (m1 + 1)2 and (m3 + 1)2, hence are positive by Lemma 2.
For m1 = 0 or m3 = 0, we set x2(t) = (1 − l1t − l1t

2/2)/(1 + t) or x4(t) =
(1 − l3t − l3t

2/2)/(1 + t) respectively.
(ii) Let the equal opposite ratios of fi and fi+1 be 1/k2

i+1, where ki+1 > 0,
for i = 1, 2, 3, 4 with k5 = k1. Then by Lemma 2(ii) we get (see an automated
checking in [36, Section 1])

li =
k2

i+1 − 1
1 + kiki+1

and mi =
k2

i − 1
1 + kiki+1

.

We get the following family of solutions of system (6) (see [36, Section 2]):

x1(t) =
(1 + t)2(1 − k1) + 1 + k1

2(1 + t)
, x2(t) =

(1 + t)2(1 + k2) + 1 − k2
2(1 + t)

,

x3(t) =
(1 + t)2(1 − k3) + 1 + k3

2(1 + t)
, x4(t) =

(1 + t)2(1 + k4) + 1 − k4
2(1 + t)

.

The ‘moreover’ part holds for the edge OA1 because x′
1(0) 
= 0 in both

cases (i) and (ii). It remains to notice that if an area-preserving Combescure
transformation increases the length of an edge, then it decreases the length of
any adjacent edge in the same face. �

To show that conditions (i)–(ii) in Theorem 1 are necessary, consider
space R

3 with the coordinates x1, x2, x3. Equations (6) for i = 1 and 2 define
two cylinders, each being centrally symmetric with respect to the origin O.
Denote by C1 their intersection. Analogously define the sets Ci in space with
the coordinates xi, xi+1, xi+2 for i = 2, 3, 4, where the indices are cyclic modulo
4. Those sets are (affine) algebraic curves of degree at most 4, which can have
several components. We first consider the case when each curve C1, . . . , C4

contains a conic, i.e., an irreducible curve of degree 2.

Lemma 3. The curve Ci contains a conic if and only if fi and fi+1 have equal
opposite ratios with respect to their common edge.

Remark 2. In particular, by Lemma 2(ii), if m2 = l1 = 0 then C1 contains a
conic.

Proof. Assume without loss of generality that i = 1.
Let us prove the ‘only if’ part. Consider a conic contained in C1. It is a

plane section of the cylinder P1(x1, x2) = 0, which is hyperbolic because the
discriminant 1 − m1l1 > 0 by Lemma 2. Hence the conic is a hyperbola. Its
center is the intersection of the axes x1 = x2 = 0 and x2 = x3 = 0 of the two
cylinders P1(x1, x2) = 0 and P2(x2, x3) = 0 with the plane of the conic. Hence
the center is the origin O. Consider the quadric

(l2 + m2 + 2)P1(x1, x2) − (l1 + m1 + 2)P2(x2, x3) = 0. (9)
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It contains the origin O and our conic. Hence it splits into one or two planes,
both passing through the origin by central symmetry. Thus the determinant
of the quadratic form in the left side of (9) is (see [36, Section 3])

(l1 + m1 + 2)(l2 + m2 + 2)
(
(m2 + 1)2(1 − m1l1) − (l1 + 1)2(1 − l2m2)

)
= 0.

(10)

The first two factors are nonzero by Lemma 2. By Lemma 2(ii), the desired
opposite ratios are equal.

Let us prove the ‘if’ part. Assume that the opposite ratios are equal.
Then by Lemma 2(ii) we get (10). If l1 = m2 = 0, then C1 contains the conic
(x1(t), x2(t), x3(t)) =

(
m1+2−m1t2

2t , t, l2+2−l2t2

2t

)
. Otherwise assume that l1 
= 0

(the case l1 = 0, m2 
= 0 is similar). Then C1 is contained in the quadric

(1 − l2m2)l1P1(x1, x2) − (1 − l1m1)m2P2(x2, x3) = (1 − l2m2)(l1x1 + x2)
2 −

−(1 − l1m1)(x2 + m2x3)
2 − (l1 + 1)2(1 − l2m2) + (m2 + 1)2(1 − l1m1) = 0.

Here the free term vanishes by (10), and 1 − l1m1, 1 − l2m2 > 0 by Lemma 2.
Thus we get a product of two linear polynomials in x1, x2, x3, and the quadric
is the union of two planes. Then C1 is the intersection of the planes with the
cylinder P2(x2, x3) = 0, i.e., contains a conic. �

We have the following direct corollary.

Corollary 2. If C1, . . . , C4 all contain conics, then condition (ii) of Theorem 1
holds.

Now we turn to the case when one of the curves Ci, say, C1, does not
contain a conic. In this case we find the orthogonal projection of C1 to the x1x3-
plane, or, thinking algebraically, we eliminate x2 from the system P1(x1, x2) =
P2(x2, x3) = 0. We need the following standard observation.

Lemma 4. The orthogonal projection of an algebraic curve C ⊂ R
3 to the

x1x3-plane preserves the degree of C, if the projection is an injective map
outside a finite subset, the inverse map is given by rational functions, and the
projectivization of C does not contain the improper point of the projectivization
of the x2-axis.

Proof. This is a step where we need slightly more advanced tools. We extend
the projection to the complex projective space. Since the inverse map is given
by rational functions, it also extends, and thus the projection remains injective.
Take a plane passing through the improper point of the x2-axis but not tangent
to C and not containing the excluded and singular points of C. The plane has
the same number of intersection points with C and its projection. By the
Bezout theorem, we are done. �

We say that an algebraic equation is reduced if it has a minimal degree
among all the equations with the same solution set in R

2.
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Lemma 5. If C1 does not contain a conic, then its orthogonal projection to the
x1x3-plane is an irreducible curve (possibly with finitely many points excluded),
given by one of the following equations:
(a) for m1 
= 0 or l2 
= 0, it is given by the reduced degree 4 equation

∣
∣
∣∣
∣
∣∣
∣

m1 0 l2 0
2x1 m1 2x3 l2

l1x2
1 − l1 − m1 − 2 2x1 m2x2

3 − l2 − m2 − 2 2x3

0 l1x2
1 − l1 − m1 − 2 0 m2x2

3 − l2 − m2 − 2

∣
∣
∣∣
∣
∣∣
∣

= 0

(11)

(b) for m1 = l2 = 0, it is given by the reduced degree 3 equation

l1x
2
1x3 − m2x

2
3x1 − (l1 + 2)x3 + (m2 + 2)x1 = 0. (12)

Remark 3. In either case, the left side of (11)–(12) is the resultant of P1(x1, x2)
and P2(x2, x3).

Proof. Notice that C1 contains no straight lines; otherwise, this line lies in both
cylinders and hence is parallel to both axes Ox1 and Ox3, which is impossible.

(a): Assume that m1 
= 0 without loss of generality. Eliminate the terms
quadratic in x2 from the system P1(x1, x2) = P2(x2, x3) = 0 by taking

l2P1(x1, x2) − m1P2(x2, x3) = 2x2(l2x1 − m1x3) +
+ l1l2x

2
1 − m1m2x

2
3 + m1m2 − l1l2 + 2(m1 − l2)︸ ︷︷ ︸

Q(x1,x3)

= 0. (13)

Expressing x2 (or better 2x2(l2x1 − m1x3)) through the resulting expression
Q(x1, x3) and substituting into the equation 4(l2x1 − m1x3)2 · P1(x1, x2) = 0,
we get

4(l1x2
1 − l1 − m1 − 2)(l2x1 − m1x3)2 − 4x1(l2x1 − m1x3)Q(x1, x3) +

+m1Q(x1, x3)2 = 0. (14)

The resulting equation is equivalent to (11) (see [36, Section 4]) and describes
a set containing the projection of C1.

Let us show that the set actually coincides with the projection after re-
moving finitely many points. Indeed, take an arbitrary (x1, x3) satisfying (14).
Consider the following two possibilities.

If l2x1−m1x3 
= 0, then set x2 = −Q(x1, x3)/2(l2x1−m1x3) so that (13)
is satisfied. Then (14) implies P1(x1, x2) = 0. Then by (13) we get P2(x2, x3) =
0 because m1 
= 0. Thus (x1, x2, x3) ∈ C1 and (x1, x3) belongs to the projection
of C1.

If l2x1 − m1x3 = 0, then (14) implies Q(x1, x3) = 0. There are only
finitely many such points (x1, x3) unless the linear polynomial l2x1 − m1x3

divides Q(x1, x3). Let us show that the latter is impossible. Indeed, otherwise
l2x1 − m1x3 divides the right side of (13) as well. Hence the latter splits
into two linear factors, and (13) defines the union of two planes (possibly
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coincident). Then C1 is the intersection of those two planes with the cylinder
P1(x1, x2) = 0. Hence C1 contains a conic or a line. This contradiction shows
that curve (14) and the line l2x1 − m1x3 = 0 have finitely many common
points, which we just drop.

Now we show that (14) is an irreducible curve of degree 4. Since C1 does
not contain conics or lines and has a degree at most 4, it follows that C1 is
irreducible of degree 4 or 3. Then curve (14) is also irreducible as a projection
of an irreducible curve. However, equation (14) can a priori be non-reduced:
its left side can be a complete square or cube or have a non-constant factor
without real roots. In either case, curve (14) would have a degree at most
2. This would contradict to Lemma 4. The assumptions of the lemma hold
because for l2x1−m1x3 
= 0, the second coordinate of a point (x1, x2, x3) ∈ C1

is uniquely determined by x1 and x3 via (13), the line l2x1−m1x3 = 0 intersects
curve (14) only at finitely many points by the above, and the projectivization of
the cylinder P1(x1, x2) = 0 does not contain the improper point of the x2-axis
by the assumption m1 
= 0. Thus (14) is reduced of degree 4 or 3. Computing
the coefficients at x4

3 and x2
1x

2
3 and using m1 
= 0, we see that (14) has degree

4 unless m2 = l1 = 0. The latter possibility is ruled out by Remark 2.
(b): m1 = l2 = 0. In this case, we eliminate x2 by taking

x3P1(x1, x2) − x1P2(x2, x3)
= l1x

2
1x3 − m2x

2
3x1 − (l1 + 2)x3 + (m2 + 2)x1 = 0. (15)

The resulting equation describes a set containing the projection of C1 to the
x1x3-plane.

Set (15) actually coincides with the projection after removing the origin.
Indeed, take an arbitrary (x1, x3) 
= (0, 0) satisfying (15). We have x1, x3 
= 0,
otherwise l1 = −2 or m2 = −2 contradicting to Lemma 2. Set x2 = (l1 + 2 −
l1x

2
1)/(2x1) = (m2 +2−m2x

2
3)/(2x3). Then P1(x1, x2) = P2(x2, x3) = 0. Thus

(x1, x2, x3) ∈ C1 and (x1, x3) belongs to the projection of C1.
Finally, we show that (15) is an irreducible cubic curve. Eq. (15) is re-

duced and has degree 3, otherwise the curve is a line, hence C1 is the inter-
section of a plane and cylinder, i.e., a conic. Similarly, the curve is irreducible,
otherwise it contains a line, and hence C1 contains a conic or a line. �

For the curve C3, once it does not contain a conic, the projection to
the x1x3-plane is given by similar equations (11)–(12), only l1,m1, l2,m2 are
replaced by m4, l4,m3, l3 respectively. If the 2 × 2 net is deformable, then by
Lemma 1 the projections of C1 and C3 have a common curve (x1(t), x3(t)). But
both projections are irreducible, thus their reduced equations are proportional,
i.e., the left sides become equal polynomials after multiplication by a nonzero
constant. Let us study two typical possibilities for that.

Lemma 6. Assume that C1 does not contain a conic. Denote by (11’)–(12’)
equations (11)–(12) with l1,m1, l2,m2 replaced by m4, l4,m3, l3 respectively. If
at least one pair of equations
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(a) (11’) and (11), where m1 
= 0;
(b) (12’) and (12), where m1 = l2 = m3 = l4 = 0;

is proportional, then the 2 × 2 net satisfies condition (i) of Theorem 1.

Proof. (a) Assume that (11’) equals (11) multiplied by some α 
= 0. Comparing
the coefficients at x1x

3
3, x4

3, x3
1x3, x4

1, x2
1x

2
3, x1x3, 1, x2

3, x2
1 respectively, we get

the system (see [36, Section 5]):

l4l3 = αm1m2 (16)
l24l23 = αm2

1m2
2 (17)

m4m3 = αl1l2 (18)
m2

4m2
3 = αl21l22 (19)

l3m3l4m4 − 2l4m4 − 2l3m3 = α
(
l1m1l2m2 − 2l1m1 − 2l2m2

)
(20)

(2m3 + l3 + 2)l4 + (m4 + 2)m3 = α
(
(2l2 + m2 + 2)m1 + (l1 + 2)l2

)
(21)

(
(m4 + 2)m3 − l4(l3 + 2)

)2
= α

(
(l1 + 2)l2 − m1(m2 + 2)

)2
(22)

l4
(
(l23 + 2l3 + 2)l4 − (l3m3 − 2)(m4 + 2)

)
= αm1

(
(m2

2 + 2m2 + 2)m1

− (l2m2 − 2)(l1 + 2)
)

(23)

m3

(
(m2

4 + 2m4 + 2)m3 − (l4m4 − 2)(l3 + 2)
)
= αl2

(
(l21 + 2l1 + 2)l2

− (l1m1 − 2)(m2 + 2)
)
. (24)

Let us prove that all the solutions of the system are given by α = 1 and
(l1,m1, l2,m2) = (m4, l4,m3, l3).

First note that l4 
= 0. Indeed, otherwise (16) implies m2 = 0 and (23)
implies l1 + m1 + 2 = 0 which contradicts Lemma 2. Now consider two cases.

Case 1: m3 = 0. Then we get l2 = 0 from (18) if l1 
= 0, and from (24) if
l1 = 0 because of l2+m2+2 
= 0. If α 
= 1, then using m1, l4 
= 0, from (16)–(17)
we get m2 = l3 = 0. Using l2,m2, l3,m3 = 0 in (21)–(22), we obtain l4 = αm1

and l24 = αm2
1 which together give α = 1, contradiction. Therefore, α = 1,

and using m3 = l2 = 0 in (16), (20), (21), we get l3l4 = m1m2, l4m4 = l1m1,
l4 = m1. These all together give (l1,m1, l2,m2) = (m4, l4,m3, l3) and we are
done.

Case 2: m3 
= 0. First, let us prove that α = 1. Assume the converse.
Since m1, l4 
= 0, from (16)–(17) we get m2 = l3 = 0, and from (18)–(19)
we get l1l2 = m4m3 = 0. Since l1 
= 0 by Remark 2 and m3 
= 0, we obtain
l2 = m4 = 0. Then (24) becomes m3(l3 + m3 + 2) = 0 which contradicts to
Lemma 2. Thus α = 1.

Then (16) and (18) become l3l4 = m1m2 and l1l2 = m3m4, respectively.
Using the latter equations in (21), we express

l2 =
(m3 + 1)(l4 + 1)

m1 + 1
− 1, l3 =

m1m2

l4
,
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m4 =
l1l2
m3

=
l1(m3l4 + m3 + l4 − m1)

m3(m1 + 1)
. (25)

Substituting (25) into (22) and (23), we get (see [36, Section 6])

(m1 + m3 + 2)(l4 −m1) ·
·
(

(m3 + 1)(l1 + 1)(l4 + 1) − (m1 + 1)(m1m2 + l1 + l4 + m1 −m3 + 1)
︸ ︷︷ ︸

A

)
= 0,

(l4 −m1)
(
A + (1 + m3)m1(m1m2 + m2m3 + l1 + m2 + l4 + m1 + 2︸ ︷︷ ︸

B

)
)

= 0.

Now if l4 
= m1, then A = B = 0 because m1,m1 +m3 +2, 1+m3 
= 0 by
Lemma 2. Then A+(m1−m3)B = (1+m3)(l1l4−m2m3) = 0 (see [36, Section
7]), thus l1l4 = m2m3. Hence B = (m1 + 1)(m2 + 1) + (l1 + 1)(l4 + 1) = 0
which contradicts to Lemma 2.

Therefore, l4 = m1, and from (25) we get (l1,m1, l2,m2) = (m4, l4,m3, l3)
and we are done.

(b) If the coefficients of (12’) and (12) are proportional, then m4 = l1
and l3 = m2. Since m1 = l2 = m3 = l4 = 0, by Lemma 2(i) we arrive at
condition (i). �

Finally, we summarize the whole argument.

Proof of Theorem 1. Conditions (i)–(ii) are sufficient by Example 2. Let us
prove that they are necessary. Assume that the 2 × 2 net is deformable. Then
by Lemma 1 system (6) has a continuous family of real solutions

(
x1(t), x2(t),

x3(t), x4(t)
)

with all xi(0) = 1. Recall that Ci denotes the curve given by
Pi(xi, xi+1) = Pi+1(xi+1, xi+2) = 0, where the indices are cyclic modulo 4.

Case (ii): each curve C1, . . . , C4 contains a conic. Then the theorem fol-
lows from Corollary 2.

Case (i): at least one of the curves C1, . . . , C4 does not contain a conic.
We use a symmetry argument to minimize the number of subcases below: First,
assume without loss of generality that C1 does not contain a conic. Second,
assume that m1 has the maximal absolute value among all mi and li+1 such
that Ci does not contain a conic (otherwise perform either a suitable cyclic
permutation of variables x1, . . . , x4 or reverse their order).

The projections of C1 and C3 to the x1x3-plane have a common curve(
x1(t), x3(t)

)
. By Lemma 5, the projection of C1 is an irreducible curve of

degree 3 or 4. Thus the curve C3 of degree at most 4 cannot contain a conic,
otherwise both C3 and its projection split into a union of conics and/or lines,
not curves of higher degree. So, by Lemma 5 the projections of C1 and C3

are irreducible curves given by (11) or (12), with l1,m1, l2,m2 replaced by
m4, l4,m3, l3 respectively in case of C3. Since both projections are irreducible,
their reduced equations must be proportional. Consider 2 subcases.
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Subcase (a): m1 
= 0. In this case, the two projections are given by (11)
and (11’): they cannot be given by (11) and (12’) because the degrees are
equal. By Lemma 6(a), the theorem follows.

Subcase (b): m1 = 0. Recall that m1 was chosen to have the maximal
absolute value among all mi and li+1 such that Ci does not contain a conic.
Thus |l2|, |m3|, |l4| ≤ |m1| = 0 and hence l2 = m3 = l4 = 0. By Lemma 6(b),
the theorem follows. �

Remark 4. In our setup, the so-called Stachel conjecture holds: the resultant of
at least one consecutive pair of homogenized polynomials Pi(xi, xi+1), where
i = 1, 2, 3, 4, is reducible. Indeed, by Theorem 1, at least one pair of adjacent
faces fi, fi+1 has equal opposite ratios with respect to their common edge.
By Lemma 3, the curve Ci, hence its projection to the xixi+2-plane, contains
a conic or a line. Hence the resultant of Pi and Pi+1 has a factor of degree
2 or 1. But the resultant itself, when homogenized, has always degree 3 or 4;
see (11)–(12). Thus it is reducible. The example of a 2 × 2 net with all the
faces being parallelograms shows that the homogenization of the polynomials
is necessary here.

3. Deformable m × n Nets

In this section, we characterize all deformable nets of arbitrary size. We state
the classification in Sect. 3.1, discuss the geometry of deformable nets in
Sect. 3.2, and give the proof in Sect. 3.3.

3.1. Statement of the Classification

We need the following notions. By an a × b sub-net of a given m × n net with
the points Pij , where 0 ≤ i ≤ m and 0 ≤ j ≤ n, we mean an a × b net with
the points Pij , where p ≤ i ≤ p + a and q ≤ j ≤ q + b, for some integers
0 ≤ p ≤ n − a and 0 ≤ q ≤ m − b. (The collection of (a + 1)(b + 1) points
indexed in this way is still viewed as an a×b net.) In particular, a 1×2 sub-net
is formed by two faces with a common edge on a parameter line j = const, and
a 2 × 1 sub-net is formed by two faces with a common edge on a parameter
line i = const.

Theorem 9. An m × n net is deformable if and only if one of the following
conditions holds:

(i) in each 1 × 2 sub-net or in each 2 × 1 sub-net, the two faces are affine
symmetric with respect to their common edge;

(ii) each pair of faces with a common edge has equal opposite ratios with
respect to that edge.

Thus all the 2×2 sub-nets of a deformable m×n net belong to the same
class, (i) or (ii).
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Figure 13. Left: An L-shaped net of size 6 × 6. Right: The
unique deformable 6× 6 net containing the L-shaped net. See
Corollary 3

Theorem 9 allows us to check if a given net is deformable. Now we give
a parametrization of deformable nets, allowing us to construct all deformable
nets close enough to a square net.

By an L-shaped net of size m×n we mean an indexed collection of 2m+2n
points Pij , where the indices satisfy the inequalities 0 ≤ i ≤ m, 0 ≤ j ≤ n,
min{i, j} ≤ 1, such that Pij , Pi+1,j , Pi,j+1, Pi+1,j+1 are consecutive vertices of
a convex quadrilateral whenever i = 0, 0 ≤ j < n or j = 0, 0 ≤ i < m. See
Fig. 13. Edges, faces, and sub-nets are defined analogously to the ones of an
m × n net. An L-shaped square net is an L-shaped net such that all the faces
are coplanar non-coincident squares.

Corollary 3. If an L-shaped net of size m × n is sufficiently close to the L-
shaped square net and satisfies one of conditions (i) or (ii) in Theorem 9, then
it is contained in exactly one deformable m × n net.

Moreover, the resulting m × n net continuously depends on the given L-
shaped net.

The reader interested in the proofs of the theorem and the corollary can
proceed to Sect. 3.3, and now we discuss geometric properties of the resulting
classes (i) and (ii) of deformable m × n nets.

3.2. Geometric Properties

3.2.1. Class (i). Deformable nets from class (i) are related to cone nets, which
are studied in [26].

An 1×n net with points Pij , where 0 ≤ i ≤ 1, 0 ≤ j ≤ n, is called a cone
strip if all the lines P0jP1j for 0 ≤ j ≤ n are either concurrent or parallel. See
Fig. 14(left). An m × n net is called a cone net if each 1 × n or each m × 1
sub-net is a cone strip. See Fig. 15. Applying Proposition 2 repeatedly (see the
red lines in Fig. 7), we see that each net from class (i) is a cone net.

The other condition depicted in Fig. 7 leads us to the following notions.
By a cone-cylinder strip we mean a cone strip such that P0,jP0,j+1 ‖ P1,jP1,j+1

for each 0 ≤ j ≤ n − 1. See Fig. 14(middle). A doubled cone-cylinder strip is
a cone strip such that P0,jP0,j+2 ‖ P1,jP1,j+2 and P0,j , P0,j+2, P1,j , P1,j+2 are
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Figure 14. Left: a cone strip. Middle: a cone-cylinder strip.
Right: a doubled cone-cylinder strip. Corresponding blue (red)
segments are parallel, and the dashed lines are concurrent.
The doubled cone-cylinder strip consists of two interleaved
cone-cylinder strips shown in red and shades of blue respec-
tively. Given the red strip, one can construct the blue one
so that they form a doubled cone-cylinder strip together: the
dark blue points can be chosen (almost) arbitrarily, the point
P10 can be freely chosen on the dashed line, and the remain-
ing light blue points are determined by the parallelism of the
resulting blue segments. The construction can then be prop-
agated to the next strips in a net

non-collinear for each 0 ≤ j ≤ n− 2. See Fig. 14(right). We see that a doubled
cone-cylinder strip consists of two interleaved cone-cylinder strips forming a
cone strip together. A cone-cylinder net and a doubled cone-cylinder net are
now defined analogously to a cone net. See Fig. 15. The faces of a cone-cylinder
net are trapezoids, but those are not T-nets of [37] because the parameter lines
need not be planar. The points P00, P0n, Pm0, Pmn are called the corners of an
m × n net.

As an immediate consequence of Proposition 2, we get a geometric char-
acterization of class (i).

Proposition 10. An m × n net such that the corners of each 2 × 1 and 1 × 2
sub-net are non-collinear satisfies condition (i) of Theorem 9 if and only if it
is a doubled cone-cylinder net.

We see that any m × n net from class (i) consists of two cone-cylinder
nets forming a cone net together. Given one of the two cone-cylinder nets, one
can construct the other one so that they comprise a net from class (i) together.
See Fig. 14(right).

This suggests taking a closer look at the cone-cylinder nets. They have
applications themselves [27].

Proposition 11. An m×n net with the points Pij, where 0 ≤ i ≤ m, 0 ≤ j ≤ n,
is a cone-cylinder net if and only if up to interchanging the indices i and j we
have

Pij = ai + σibj , 0 ≤ i ≤ m and 0 ≤ j ≤ n, (26)
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Figure 15. Cone-cylinder nets. Left: the deformable net
from Fig. 1. Right: another example. The yellow lines are con-
current and the red lines are parallel

for some a0, . . . , am, b0, . . . , bn ∈ R
d and σ0, . . . , σm ∈ R.

Proof. The ‘only if ’ part. Take a cone-cylinder net. Up to interchanging the
indices i and j, we may assume that all 1×n sub-nets are cone-cylinder strips.
Then for each 0 ≤ i < m, the broken line Pi+1,0 . . . Pi+1,n is obtained from
Pi,0 . . . Pi,n by a central similarity or a translation. Then all the broken lines are
obtained from P0,0 . . . P0,n by central similarities or translations. This means
that (26) holds for bj := P0,j and suitable ai and σi.

The ‘if ’ part. Take an m×n net given by (26). Any broken line Pi,0 . . . Pi,n

(with constant i) arises from the broken line b0 . . . bn by uniform scaling with
factor σi and subsequent translation by ai. Hence, two consecutive broken
lines Pi,0 . . . Pi,n and Pi+1,0 . . . Pi+1,n are related by a central similarity or a
translation in case of σi = σi+1. Thus, the broken lines have parallel edges and
are connected by a cone, whose vertex ci is easily seen to be

ci =
σi+1ai − σiai+1

σi+1 − σi
.

The cone becomes a cylinder with ruling direction ai − ai+1 for σi = σi+1. We
get a cone-cylinder net. �

As a corollary, any cone-cylinder net (at least, with noncoplanar faces) is
also a doubled cone-cylinder net, hence is deformable. One can also construct
the deformation explicitly. This will be a special case of a conical Combescure
transform from [26, §4]. We assume σi > 0 for simplicity.
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Proposition 12. A cone-cylinder net (26) with all σi > 0 is embedded into a
family

Pij(t) := a0 +

i∑

k=1

(ak − ak−1) (σk + σk−1)√
t + σ2

k +
√

t + σ2
k−1

︸ ︷︷ ︸
ai(t)

+
√

t + σ2
i

︸ ︷︷ ︸
σi(t)

bj , 0 ≤ i ≤ m, 0 ≤ j ≤ n, (27)

of cone-cylinder nets, which are its area-preserving Combescure transforma-
tions, for some ε > 0 and all t ∈ [0, ε].

Proof. By Proposition 11, net (27) is a cone-cylinder net for each t sufficiently
close to 0, because it is of the form Pij(t) = ai(t) + σi(t)bj . For t = 0, it
coincides with (26) because all σi > 0. Since

−−−−−−−−−−→
Pi,j−1(t)Pij(t) =

√
t + σ2

i · (bj − bj−1) =

√
t + σ2

i

σi
· −−−−−−→
Pi,j−1Pij ,

−−−−−−−−−−→
Pi−1,j(t)Pij(t) =

(ai − ai−1) (σi + σi−1)
√

t + σ2
i +

√
t + σ2

i−1

+
(√

t + σ2
i −

√
t + σ2

i−1

)
bj

=
(σi + σi−1)

−−−−−−→
Pi−1,jPij

√
t + σ2

i +
√

t + σ2
i−1

for each t ∈ [0, ε], nets (27) and (26) are Combescure transforms. Area
preservation follows from

(Pi,j−1(t)Pij(t) + Pi−1,j−1(t)Pi−1,j(t)) · Pi−1,j(t)Pij(t) =
= |bj − bj−1|(σi + σi−1)Pi−1,jPij = const.

For distinct t ∈ [0, ε], nets (27) are non-congruent because the edge lengths
Pi,j−1(t)Pij(t) are distinct. �

3.2.2. Class (ii). All we said about 2×2 nets from class (ii) in Sect. 2.2 remains
true for m × n nets. Propositions 4, 5, 7 remain true with the same proofs, if
“2 × 2” is replaced by “m × n” (because an m × n net is a Kœnigs net if and
only if all its 2 × 2 sub-nets are):

Proposition 13. An m×n net satisfies condition (ii) of Theorem 9 if and only
if it has a Christoffel dual with the same areas of corresponding faces. For such
an m × n net, a family of area-preserving Combesure transformations is given
by (3) for 0 ≤ i ≤ m and 0 ≤ j ≤ n.

Corollary 4. A deformable m × n net has a deformable Christoffel dual.

Proof. By Theorem 9, a deformable m×n net belongs to one of the classes (i)–
(ii). For class (ii), the desired result follows from Proposition 13 immediately.
For class (i), we construct the deformable Christoffel dual as follows. Assume
that each 1 × 2 sub-net is affine symmetric, that is, its two faces are affine
symmetric with respect to their common edge, hence have equal opposite ratios
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Figure 16. The position of the intersection points of the
opposite sides of quadrilaterals ABCD and ABC ′D′ having
equal opposite ratios with respect to the common side AB

with respect to corresponding edges. Then, each 1 × n sub-net belongs to
class (ii) as well, and by Proposition 13, it has a Christoffel dual 1×n net with
the same areas of corresponding faces. By Proposition 6, the opposite ratio of
a face f with respect to an edge e is inverse to the opposite ratio of the dual
face f∗ with respect to e∗. Thus the Christoffel dual 1×n nets still have affine
symmetric 1 × 2 sub-nets and can be scaled to compose the whole Christoffel
dual m × n net altogether. The latter still belongs to class (i) and hence is
deformable. �

In class (ii), the following zig-zag phenomenon occurs. Recall that by
Proposition 8 the rays extending the sides BC and AD of a convex quadrilat-
eral ABCD intersect if and only if the opposite ratio of ABCD with respect
to AB is greater than 1. If two quadrilaterals ABCD and ABC ′D′ in the
plane have a common side AB (and no other common points), and opposite
ratios with respect to that side are equal, then the pairs of lines BC,AD and
BC ′, AD′ intersect on the opposite sides of the line AB, unless BC ‖ AD and
BC ′ ‖ AD′. See Fig. 16. For spatial nets from class (ii), the same happens in
the projection to any plane. This shows that the ‘zig-zag’ shape of the discrete
parameter lines like in Fig. 3 is unavoidable unless the parameter lines have
parallel edges. The same is true for class (i), but only for the parameter lines
in one of the two directions. Cf. [26, Figure 5 to the right].

3.3. Proof of the Classification

For the proof of the classification of deformable m × n nets, we need the
following lemmas describing deformations of their small sub-nets.

Lemma 7. For each segment e′ parallel and sufficiently close in length to an
edge e of a 1 × 1 net, there exists a unique deformation of this net such that
e′ is its edge corresponding to e.

Proof. Denote by ABCD the only face of the 1 × 1 net with AB := e. Let
A′, B′ be the endpoints of the segment e′ so that

−−→
AB and

−−−→
A′B′ have the same

direction. Consider arbitrary points C ′,D′ on the two rays cooriented with
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BC,AD starting at B′, A′, respectively, such that
−−−→
C ′D′ and

−−→
CD have the

same direction. Since e′ has a sufficiently close length to e, we may continuously
move the segment C ′D′ so that it remains parallel to CD, the quadrilateral
A′B′C ′D′ remains convex, and the area of A′B′C ′D′ changes monotonically
and continuously in an interval containing the value of the area of ABCD.
Therefore, we can choose positions of C ′,D′ so that the quadrilaterals ABCD
and A′B′C ′D′ have the same areas. The resulting quadrilateral A′B′C ′D′ is
the desired unique deformation. (Indeed, it is contained in a continuous family
of parallel 1 × 1 nets of the same area, obtained by the same construction
for some continuous family of segments between e and e′. Conversely, any
deformation of ABCD is contained in a continuous family, hence it has the
same edge directions, hence coincides with A′B′C ′D′ above and is unique.)
�

Lemma 8. For each segment e′ parallel and sufficiently close in length to an
edge e of a deformable 2× 2 net, there is a unique deformation of the net such
that e′ is its edge corresponding to e.

Proof. Uniqueness. Consider a deformation of the 2 × 2 net such that e′ is
its edge corresponding to e. By Lemma 7, each 1 × 1 sub-net containing the
edge e′ is determined uniquely. This means that the faces containing e′ and all
the edges of those faces are determined uniquely. Applying Lemma 7 to the
adjacent faces repeatedly, we get that they all are determined uniquely.

Existence. By Theorem 1, a deformable 2 × 2 net satisfies one of the
conditions (i)–(ii) in that theorem. Take a particular family of deformations
given by Example 2.

Consider the ratio of the lengths of e and its corresponding edge in a
net from this family. By the ‘moreover’ part of Example 2, such ratios form
an interval containing 1 in its interior. Since e′ is close enough in length to
e, there is a net in this family that the edge corresponding to e has the same
length as e′. �

The ‘if’ part in Theorem 9 follows from Theorem 1 and the following
lemma.

Lemma 9. If each 2 × 2 sub-net of an m × n net is deformable, then the net is
deformable.

Proof. Let us construct the desired deformation by slightly moving vertices
Pij to new positions Pij(t), where 0 ≤ i ≤ m and 0 ≤ j ≤ n, one by one.

First, let us define inductively the points Pij(t) for i = 0, 1 and j =
0, . . . , n. Let P00(t) and P10(t) be any points such that the edges P00(t)
P10(t) and P00(0)P10(0) = P00P10 are parallel and have sufficiently close
lengths (and continuously depend on t but are not congruent for t 
= 0). Now,
assume that the points P0j(t) and P1j(t), where 0 ≤ j ≤ n−1 have already been



   27 Page 32 of 43 O. Pirahmad et al. Results Math

Figure 17. Construction of a deformation layer by layer; see
the proof of Lemma 9

defined. Then by Lemma 7 there exist unique points P0,j+1(t) and P1,j+1(t)
such that the quadrilaterals P0,jP0,j+1P1,j+1P1,j and P0,j(t)P0,j+1(t)P1,j+1

(t)P1,j(t) have parallel sides, equal areas, and depend on t continuously. By
induction, we define Pij(t) for i = 0, 1 and all j = 0, . . . , n.

For m = 1 (and similarly for n = 1), this finishes the proof. Assume
m,n ≥ 2. Now we define the points Pij(t) inductively for i = 2, . . . ,m and
j = 0, . . . , n. See Fig. 17.

Assume that for some 1 ≤ k ≤ n−1 the points Pij(t), where 0 ≤ i ≤ k−1
and j = 0, . . . , n have already been defined. Let us define the points Pij(t) for
i = k and j = 0, . . . , n.

Apply Lemma 8 to the 2 × 2 sub-net formed by the vertices Pij , where
k − 2 ≤ i ≤ k and 0 ≤ j ≤ 2, the edges e′ = Pk−1,0(t)Pk−1,1(t) and
e = Pk−1,0Pk−1,1. The latter edges are indeed parallel and have close lengths
by construction. Consider the deformation Pij(t), where k − 2 ≤ i ≤ k and
0 ≤ j ≤ 2, of the 2 × 2 sub-net given by the lemma. Then the vertices
Pk,0(t), Pk,1(t), Pk,2(t) are the desired ones. Note that the positions of the ver-
tices Pk−1,2(t), Pk−2,0(t), Pk−2,1(t), Pk−2,2(t) in the deformation of the 2 × 2
sub-net coincide with the ones constructed before because of Lemma 7.

Finally, assume that the points Pk,0(t), . . . , Pk,l(t) have already been de-
fined for some 2 ≤ l ≤ n−1. Let us define the point Pk,l+1(t). Apply Lemma 8
to the 2 × 2 sub-net formed by the vertices Pij , where k − 2 ≤ i ≤ k and
l − 1 ≤ j ≤ l + 1, the edges e′ = Pk−1,l−1(t)Pk−1,l(t) and e = Pk−1,l−1Pk−1,l.
The resulting deformation of the 2×2 sub-net gives the desired point Pk,l+1(t).
Note that the positions of the other vertices in the deformation of the sub-net
coincide with the ones constructed before because of Lemma 7. Now the lemma
follows by induction. �

Remark 5. Note that this lemma was not simple at all: to “propagate” a de-
formation to all 2× 2 sub-nets, we needed to ensure that for any edge, a 2× 2
sub-net has both a deformation increasing its length and a deformation de-
creasing it (the ‘moreover’ part of Example 2). We do not know how to prove
this without proving the whole Classification Theorem 1.

The same concerns flexible nets in Euclidean geometry [33, Theorem 3.2]:
to “propagate” a deformation to all 3 × 3 sub-nets, we need to ensure that for
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any edge, a 3× 3sub-net has both a flexion increasing the dihedral angle at the
edge and a flexion decreasing it. Otherwise, a priori, one flexible 3 × 3 sub-net
of a 3×4 net could have no flexions increasing a particular dihedral angle, and
the other flexible 3 × 3 sub-net could have no flexions decreasing it; thus, the
whole 3×4 net would not be flexible. This has been overlooked before, although
a similar phenomenon occurs in the smooth setup; see, e.g., [37, Figure 18].
We conjecture that the analog of Lemma 9 for Euclidean flexible nets is not
true. This shows again that the isotropic analog of a Euclidean problem gives
insight into the latter.

For the ‘only if’ part of Theorem 9, we need the following construction
and lemmas.

To an m × n net Pij , assign two m × n tables H and V filled by real
numbers as follows. The cells of the tables are in the obvious bijection with
the faces of the net. We fill the cells (faces) as follows.

Into a face PijPi−1,jPi−1,j−1Pi,j−1 of the table H, where 1 ≤ i ≤ m and
1 ≤ j ≤ n, put the opposite ratio of the face with respect to the side PijPi,j−1

(respectively, Pi−1,jPi−1,j−1) if i is even (respectively, odd). Into the same
face of the table V , put the opposite ratio with respect to the side PijPi−1,j

(respectively, Pi,j−1Pi−1,j−1) if j is even (respectively, odd).
Clearly, conditions (i)–(ii) of Theorem 9 can then be restated as follows.

Lemma 10. Conditions (i)–(ii) of Theorem 9 are equivalent to the following
ones:

(i) both tables H and V have equal rows or both have equal columns;
(ii) table H has equal rows and table V has equal columns.

For a deformable 2 × 2 net, one of the resulting conditions holds by
Theorem 1. The same concerns 2 × 2 sub-nets of a deformable m × n net. We
come to the following simple lemma.

Lemma 11. An m × n table is filled by real numbers. Assume that each square
2 × 2 consists of two equal rows or two equal columns. Then all rows or all
columns of the table are equal.

Proof. Assume that m,n ≥ 2; otherwise there is nothing to prove. We prove the
lemma by induction on m+n. The induction base, m+n = 4, i.e., m = n = 2,
is automatic. To perform the induction step, assume that m + n ≥ 5 and the
lemma holds for any (m − 1) × n or m × (n − 1) table, and let us prove it for
an m × n table. Consider the following two cases:

Case 1: some two neighboring non-corner cells of the m×n table contain
unequal numbers. Without loss of generality, the two cells belong to one row.
They are both contained in two different (m − 1) × n tables or two different
m × (n − 1) tables. Then by the inductive hypothesis, each of the two tables
has equal rows or equal columns. Since the two cells belong to one row and
contain different numbers, it follows that the rows are equal. Since the two
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tables have either a common row or a common column, the rows in the whole
m × n table are equal as well.

Case 2: any two neighboring non-corner cells contain equal numbers. Then
consider a 2×2 corner table. If m,n ≥ 3, then the numbers in its cells must be
equal, leading to the table with equal numbers. If, say, m = 2, then the 2 × 2
table has equal rows, leading to equal rows of the m × n table. �

Let us summarize the argument.

Proof of Theorem 9. The ’if’ part follows from Theorem 1 and Lemma 9. The
’only if’ part follows from Theorem 1 and Lemmas 10–11. �
Proof of Corollary 3. Given the first row and the first column of tables H and
V , any of conditions (i)–(ii) in Lemma 10 uniquely determines all the other
entries. By Theorem 9, this means that the L-shaped m × n net uniquely
determines the opposite ratios of all the other faces of the desired deformable
m × n net. It remains to show that those faces are uniquely determined by
their opposite ratios.

We define inductively the points Pij where 2 ≤ i ≤ m, 2 ≤ j ≤ n,
repeatedly applying Corollary 1 to all faces; see Fig. 17. Assume that the
points Pi−1,j−1, Pi−1,j , Pi,j−1 have already been determined. The points are
not collinear if the L-shaped m×n net is close to the L-shaped square net. By
Corollary 1, there is a unique point Pij such that Pi−1,j−1Pi−1,jPijPi,j−1 has
the desired opposite ratios with respect to Pi−1,j−1Pi−1,j and Pi−1,j−1Pi,j−1.
By induction, the corollary follows. �

4. Smooth Deformable Nets

In the previous section, we described all deformable discrete nets. We now
proceed to smooth deformable nets and do this only by finding the smooth
analogs of the above classes.

4.1. Cone-Cylinder Nets

Discrete deformable nets of class (i) are combinations of two interleaved dis-
crete cone-cylinder nets. The smooth analog of both must be the same smooth
surface. Passing from the discrete variables i and j to continuous variables u
and v in (26), we conclude that the smooth analog of class (i) is exactly the
smooth cone-cylinder nets, that is, the ones that possess a parameterization of
the form

f(u, v) = a(u) + σ(u)b(v), (u, v) ∈ U = [α, β] × [γ, δ] ⊂ R
2, (28)

for some smooth functions a : [α, β] → R
d, b : [γ, δ] → R

d, σ : [α, β] → R. These
surfaces have been used in architectural design [27], where they are called scale-
translational surfaces with base curves a(u) and b(v) and scaling function σ(u).
Indeed, curve b(v) gets scaled with σ(u). Without scaling (σ(u) = 1), one
obtains ordinary translational surfaces.
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In the following, we assume a parameter rectangle U = [α, β]×[γ, δ] ⊂ R
2

on which parameterizations f(u, v) are regular. This means that fu(u, v) ∦

fv(u, v) for each (u, v) ∈ U or, in our case, a′(u) + σ′(u)b(v) ∦ σ(u)b′(v).
In particular, σ(u) 
= 0 everywhere. Assume without loss of generality that
σ(u) > 0; otherwise, change the sign of both σ and b. We see that f(u, v) is
a conjugate net, which means that the mixed partial derivative fuv at each
point is parallel to the tangent plane; here fuv = σ′(u)b′(v) is even parallel to
fv = σ(u)b′(v).

Proposition 14. A conjugate net f : U → R
d has form (28) with σ(u) > 0 if

and only if the tangents to the u-parameter lines at points of each v-parameter
line are concurrent or parallel and the tangents to the v-parameter lines at
points of each u-parameter line are parallel.

Proof. Since f is a conjugate net, it follows that fuv = pfu + qfv for some
p, q : U → R. Then [26, Lemma 2] asserts that the conditions on the u- and
v-parameter lines in the proposition are equivalent to pq = qv and p = 0,
respectively. Those are satisfied for net (28) because it has fuv = fvσ′(u)/σ(u).

Conversely, if pq = qv and p = 0, then q = q(u) does not depend on v.
We get fuv = q(u)fv. Integrating with respect to v, we get fu = q(u)f + c(u)
for some function c : [α, β] → R

d. Let σ : [α, β] → R be any positive solution
of σ′/σ = q. Then we can write the equation fu = q(u)f + c(u) in the form
(f/σ)′

u = c/σ. Again, integrating with respect to u and multiplying both sides
by σ, we arrive at f(u, v) = a(u) + σ(u) · b(v) for some a : [α, β] → R

d and
b : [γ, δ] → R

d. �

We found more than just the fact that f(u, v) in equation (28) represents
a smooth cone-cylinder net. We see that sampling the parameter intervals for
a(u) and b(v) and evaluating f(u, v) on the resulting grid yields a discrete
m×n cone-cylinder net. We have here an instant of a multi-Q-net in the sense
of Bobenko et al. [28].

We now proceed to deformations (area-preserving C-trafos) of surfaces
(28) and provide an analytical proof of deformability.

Two conjugate nets f, f+ : U → R
d are parallel or Combescure transforms

of each other if fu(u, v) ‖ f+
u (u, v) and fv(u, v) ‖ f+

v (u, v) for each (u, v) ∈
U . A Combescure transform f+ of a conjugate net f is area-preserving, if
determinants of the first fundamental forms agree,

〈fu, fu〉 · 〈fv, fv〉 − 〈fu, fv〉2 = 〈f+
u , f+

u 〉 · 〈f+
v , f+

v 〉 − 〈f+
u , f+

v 〉2,
at each point (u, v) ∈ U , where 〈x, y〉 denotes the scalar product of vectors x
and y. Two conjugate nets f, f+ : U → R

d are congruent, if f+ = g ◦ f for
some isometry g : R

d → R
d.

A conjugate net f(u, v) is called deformable if it belongs to a continu-
ous family of pairwise non-congruent area-preserving Combescure transforms
f+(u, v, t), where t ∈ [0, 1].
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It would be interesting to find all smooth deformable nets. We have the
following partial result.

Proposition 15. Any regular cone-cylinder net (28) is deformable. For σ(u) >
0, it is embedded into a one-parameter family

f+(u, v, t) := a(α) +
∫ u

α

a′(w)σ(w) dw
√

t + σ(w)2
︸ ︷︷ ︸

a(u,t)

+
√

t + σ(u)2
︸ ︷︷ ︸

σ(u,t)

b(v), t ∈ [0, 1], (u, v) ∈ U, (29)

of cone-cylinder nets which are related to each other by area-preserving Combes-
cure transformations.

This is a particular case of a conical Combescure transformation intro-
duced in [26, Definition 4].

Proof. To prove that f is deformable, the continuous family (29) has to consist
of non-congruent area-preserving Combescure transforms f+ : U × [0, 1] → R

d.
Since f+(u, v, 0) = f(u, v), the family f+ contains f . Clearly, f+(u, v, t)

is continuous.
Since

σ · b′ = fv(u, v) ‖ f+
v (u, v, t) =

√
t + σ2 · b′ and

a′ + σ′b = fu(u, v) ‖ f+
u (u, v, t) =

σ(a′ + σ′b)√
t + σ2

,

for each t ∈ [0, 1] and (u, v) ∈ U , the nets f and f+ are Combescure
transforms. In particular, f+(u, v, t) is regular for each t ∈ [0, 1]. It is a cone-
cylinder net for each t ∈ [0, 1] because it is of the form f+(u, v, t) = a(u, t) +
σ(u, t)b(v). Area preservation follows from

〈f+
u , f+

u 〉〈f+
v , f+

v 〉 − 〈f+
u , f+

v 〉2 = σ2(‖a′ + σ′b‖2 ‖b′‖2 − 〈b′, a′ + σ′b〉2) =
= 〈fu, fu〉〈fv, fv〉 − 〈fu, fv〉2.
For distinct t ∈ [0, 1], the nets f+(u, v, t) are non-congruent because

f+
v =

√
t + σ2 · b′ are distinct by the regularity condition b′ 
= 0. �

As for discrete deformable nets of class (ii), they do not lead to new
smooth examples. Their smooth analog is smooth nets having an area-preserving
Chrostoffel dual. Those are translational nets, a particular case of (28) with
σ(u) = 1. Indeed, recall that a Christoffel dual f∗ : U → R

d of a smooth net
f : U → R

d is defined by the conditions f∗
u = fu/ν2 and f∗

v = −fv/ν2 for some
smooth function ν : U → (0,+∞). The transform f∗ is area-preserving if and
only if ν = 1. We get (f + f∗)′

v = 0, (f − f∗)′
u = 0, and arrive at (28) with

σ(u) = 1.
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Remark 6. Area-preserving Combescure transforms of smooth nets preserve
the Gaussian curvature, the isotopic Gaussian curvature, and, more generally,
the relative Gaussian curvature with respect to any relative sphere. Indeed,
since the directions of the tangent planes are preserved, it follows that the
Gaussian image is preserved, hence its area. The area of the deforming surface
does not change as well. The Gaussian curvature is a limit of the ratio of these
areas and is thus preserved.

4.2. Principal Cone-Cylinder Nets

Let us give a classification of smooth principal (i.e., orthogonal) cone-cylinder
nets. Hereafter we use some terminology from differential geometry; see e.g.
[26].

Proposition 16. Regular smooth orthogonal cone-cylinder nets without umbilics
are exactly principal curvature nets on cylinders, cones, and rotational surfaces
without umbilics.

Proof. Clearly, such principal curvature nets are smooth orthogonal cone-
cylinder nets.

Conversely, consider any regular smooth orthogonal cone-cylinder net
without umbilics. By Proposition 14, the tangents to the u-parameter lines
at points of each v-parameter line are concurrent or parallel and the tangents
to the v-parameter lines at points of each u-parameter line are parallel. By
orthogonality, each v-parameter line lies on a sphere or a plane Sv orthogonal
to the u-parameter lines (at the points of the v-parameter line), and each u-
parameter line lies on a plane Pu orthogonal to the v-parameter lines. We get
a strong restriction on the net in each of the possible cases:

Case 1: all the planes Pu are parallel. Each v-parameter line is orthogonal
to one of the planes Pu at each point, hence it is a straight line orthogonal to
them. We get a principal curvature net on a cylinder.

Case 2: all the planes Pu have a common line l. Each v-parameter line is
orthogonal to one of the planes Pu at each point, hence it is a circle with the
axis l. We get a principal curvature net on a rotational surface.

Case 3: some three planes Pu have a unique common point or intersect
in three parallel lines. By construction, each sphere or plane Sv is orthogonal
to each plane Pu. Therefore, if Sv is a sphere, then its center belongs to the
intersection of all the planes Pu. If some three planes Pu pairwise intersect
in three parallel lines, then the triple intersection is empty, and all Sv must
be parallel planes. Interchanging u and v leads to Case 1 already considered.
If some three planes Pu have a unique common point, then all Sv must be
concentric spheres. Each u-parameter line is orthogonal to one of the spheres
Sv at each point, hence it is a straight line passing through their common
center. We get a principal curvature net on a cone. �
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This can also be deduced from a theorem by Darboux [26, Theorem 16].
It would be interesting to obtain an analogous result in the discrete setup. Cf.
[26, Theorem 38].

5. Conclusion, Flexible Nets, and Future Work

Motivated by the design of flexible Q-nets in Euclidean geometry, we first
turned to the isotropic counterpart and, more precisely, to the metric dual in
I3. These dual nets are Q-nets which are deformable in the sense that they
admit a one-parameter family of area preserving Combescure transformations.
Using elementary algebraic and geometric methods, we could completely clas-
sify these nets. They fall into two classes. Class (i) is composed of two in-
terleaved cone-cylinder nets. Class (ii) is characterized by the existence of a
Christoffel dual with equal areas of corresponding faces. This implies, in gen-
eral, a visually non-smooth behavior. As a result of that, the smooth analogs
of (ii) are just translational nets and a special case of the smooth analogs of
type (i), which are smooth cone-cylinder nets, also known as scale-translational
surfaces.

While the Euclidean classification of flexible Q-nets has so far only been
done for nets with 3 × 3 faces and led to a large number of classes [10], the
isotropic classification is for arbitrary m × n nets and has only two classes.

5.1. Flexible Nets in I3

Let us briefly and informally mention some basic facts on flexible conjugate
nets in isotropic 3-space I3 (both smooth and discrete). They are related to
the deformable nets studied in this paper through metric duality. This duality
can be realized by polarity with respect to the isotropic unit sphere S2

i : 2z =
x2 + y2, which is a rotational paraboloid in Euclidean space with Cartesian
coordinates (x, y, z). It maps a point with coordinates (u, v, w) to a plane and
vice versa:

δ : (u, v, w) ←→ ux + vy − z − w = 0.

Parallel planes ux + vy − z − wi = 0, i = 1, 2, correspond to points (u, v, wi)
with the same projection (u, v, 0) onto the plane z = 0 (top view). Note that
isotropic distances are measured in the top view. A smooth surface f seen as
a set of contact elements (p, T ) (points plus tangent planes) gets mapped to
a surface δ(f) as a set of contact elements (δ(p), δ(T )) (tangent planes plus
contact points). If Ki is the isotropic Gaussian curvature at a contact element
of f , the isotropic Gaussian curvature at the image element is 1/Ki [38]. For
a deformation of f , both are preserved by Remark 6. Putting all these facts
together, we see that a smooth deformable net f corresponds under metric
duality δ to a flexible net δ(f): The deformation keeps the top view (thus the
intrinsic metric) and the isotropic Gaussian curvature invariant. This charac-
terizes an isometric deformation in I3 (see [20]). By definition, a deformable
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Figure 18. A cone-cylinder net (left) and its metric dual
(right). The latter is a flexible surface in isotropic geometry
having planar discrete parameter lines, one family lying in
isotropic planes. Parts of those planes are shown in the figure
to the right

Q-net f corresponds under metric duality δ to a flexible Q-net δ(f). If a Q-
net f is deformable, so are all Q-nets that have the same top view as f . Via
duality, we obtain the expected isotropic counterpart of a property of flexible
Q-nets in Euclidean R

3: If a Q-net is flexible in I3, so are all nets related to
it by Combescure transformations.

Let us briefly discuss the dual δ(f) of a discrete cone-cylinder net f .
Any polarity relates lines through a fixed point to lines in a fixed plane. In
particular, δ maps parallel lines to lines with the same top view. Thus, a cone-
cylinder net corresponds to a Q-net with planar parameter lines, where one
family of parameter lines lie in isotropic planes (parallel to the z-axis). This
family corresponds to the cylindrical strips. The parameter lines of the other
family do, in general, not lie in isotropic planes. Only a translational net f
corresponds to a Q-net where both families of parameter lines lie in isotropic
planes. These are the isotropic counterparts to Voss nets (see also [20]). Note
that the class of Q-nets whose parameter lines lie in planes is invariant under
C-trafos and so is the property of parameter lines lying in isotropic planes.

Even without the isotropic flexibility, the nets δ(f) are of interest for
applications, namely in architectural structures. The planarity of faces (panels)
and of parameter lines (long range supporting beams) provides an advantage
for construction (see [29,30]). If we consider the z-axis vertical, one family of
these long range beams lies in vertical planes, which can be an advantage as
well. An example is shown in Fig. 18.

5.2. Future Research

In a subsequent paper, we will discuss flexible nets in I3 in detail. As a conclu-
sion from the present study, we know already that the only nets with a visually
smooth appearance can be those of class (i). However, flexible mechanisms of-
ten have a folding behavior, and therefore we also need to address class (ii).
From a geometric perspective, it is interesting to study the reciprocal parallel
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nets of flexible nets in I3. Their Euclidean counterparts (Bianchi surfaces in
the smooth setting) have been addressed by Schief et al. [33]. On the appli-
cations side, the main focus is on good ways to control the shapes of flexible
Q-nets in I3 and on numerical optimization algorithms for the transition to
flexible Q-nets in Euclidean 3-space. Our initial numerical experiments show
that this transition works for Voss nets, and thus we are optimistic that the
more interesting general types can be handled as well. The isotropic flexible Q-
nets are more general than just isotropic counterparts to the explicitly known
Euclidean flexible m × n nets (Voss nets, T-nets and P-nets [12]). Possibly
the simpler isotropic versions lead to so far unknown explicit constructions
of certain types of Euclidean flexible Q-nets that do not require numerical
optimization.

The idea of initializing a numerical optimization algorithm for the com-
putation of a Euclidean structure by an isotropic counterpart goes beyond the
context of flexibility and deserves to be investigated for other difficult prob-
lems. For instance, see [39,40].
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