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Abstract

We study surfaces with a constant ratio of principal curvatures in
Euclidean and simply isotropic geometries and characterize rotational,
channel, ruled, helical, and translational surfaces of this kind under
some technical restrictions (the latter two cases only in isotropic
geometry). We use the interlacing of various methods of differen-
tial geometry, including line geometry and Lie sphere geometry,
ordinary differential equations, and elementary algebraic geometry.
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1 Introduction

We study surfaces with a constant ratio of principal curvatures in Euclidean
and simply isotropic geometries and characterize rotational, channel, ruled,
helical, and translational surfaces of this kind under some technical restrictions
(the latter two cases only in isotropic geometry).

Surfaces with a constant ratio of principal curvatures, or briefly CRPC
surfaces, generalize minimal surfaces while keeping invariance under similarities.
However, they are significantly harder to construct than minimal surfaces.
CRPC surfaces are characterized geometrically as surfaces having a constant
angle between characteristic curves (asymptotic curves in the case of negative
Gaussian curvature; conjugate and principal symmetric curves in case of positive
Gaussian curvature).

Recent interest in CRPC surfaces has its origin in architecture, in particular
in the aim of building geometrically complex shapes from simple elements. A
remarkable class of such shapes is given by the asymptotic gridshells of E. Schling
[1, 2]. See Fig. 1. They are formed by bending originally flat straight lamellas
of bendable material (metal, timber) and arranging them in a quadrilateral
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Fig. 1: An asymptotic gridshell (top) [1]. Straight lamellas (middle) follow
asymptotic curves of the reference surface and intersect under a right angle. This
simplifies the manufacturing process as all steel joints (bottom) are identical but
forces the reference surface to be a Euclidean minimal surface. If the intersection
angle is constant and not right, then the joints are still identical, and we get
more general surfaces: ones with a constant ratio of principal curvatures.

structure so that all strips are orthogonal to some reference surface S. This
requires the strips to follow asymptotic curves on S. If, in addition, one aims
at congruent nodes to further simplify fabrication, one arrives at surfaces S on
which asymptotic directions form a constant angle, i.e., at negatively curved
CRPC surfaces. Even positively curved CRPC surfaces and other Weingarten
surfaces are of interest in architecture, since they only have a one-parameter
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family of curvature elements, which simplifies surface paneling of double-curved
architectural skins through mold re-use [3].

A classical general approach to complicated problems in Euclidean geometry
is to start with their simpler analogs in so-called simply isotropic geometry. The
isotropic analogs give a lot of geometric insight and also provide an initial guess
for numerical optimization. This approach has been (implicitly) used since as
early as the work [4] by Müntz from 1911, who solved the Plateau problem for
Euclidean minimal surfaces in a quite general setup by deformation of graphs
of harmonic functions. Such graphs are minimal surfaces in simply isotropic
geometry; thus in this case the optimization led to the whole existence proof.

Simply isotropic geometry, also called just isotropic geometry in the literature
and the rest of this paper, has been studied extensively by K. Strubecker (see,
e.g., [5–7]) and is treated in the monograph by H. Sachs [8]. It is based on
the group of affine transformations which preserve the isotropic semi-norm
∥(x, y, z)∥i :=

√
x2 + y2 in space with the coordinates x, y, z. It can also be

seen as relative differential geometry with respect to the unit isotropic sphere
(paraboloid of revolution) 2z = x2+y2 (see [9–11]). Isotropic geometry is simpler
but has much in common with Euclidean and other Cayley–Klein geometries.

The isotropic geometry of surfaces appears also in structural design and
statics (see, e.g., [12]), due to the close relation between the stresses in a planar
body and the isotropic curvatures of the associated Airy stress surface [13].
CRPC surfaces in isotropic space represent planar stress states with a constant
ratio of principal stresses.

In our arguments, we use the interlacing of various methods of differential
geometry, ordinary differential equations, and elementary algebraic geometry
(the latter — in the classification of the translational CRPC surfaces, which
we consider as our main contribution; see Section 7).

1.1 Previous work

Euclidean Geometry. Only a few explicit examples of CRPC surfaces, not
being minimal surfaces, have been known before. The explicit parameterizations
were only available for rotational and helical CRPC surfaces [14–20].

CRPC surfaces are a special case of so-called Weingarten surfaces. A Wein-
garten surface is a surface with a fixed functional relation f(H,K) = 0 between
the mean curvature H and Gaussian curvature K at each point (we assume
that the zero set of the function f is an analytic curve). A surface is called
linear Weingarten if there is a fixed linear relation between the two principal
curvatures κ1 and κ2 at each point. Recently López and Pámpano [18] have
classified all rotational linear Weingarten surfaces, which are CRPC surfaces
when the intercept of the relation is zero. Moreover, it has been shown that
linear Weingarten surfaces are rotational if they are foliated by a family of cir-
cles [21]. Using quite involved computations, Havĺıček [22] proved that channel
Weingarten surfaces must be rotational or pipe surfaces; cf. [23]. In Section 3
we give a geometric proof of this result.
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In works [24–26] rotational CRPC surfaces with K < 0 have been character-
ized via isogonal asymptotic parameterizations. Yang et al. [20] have recently
presented a characterization of all helical CRPC surfaces.

The most well-studied Weingarten surfaces are the ones with K = const
or H = const. Classification results for rotational, helical, and translational
surfaces of this kind can be found in [27, Chapter 26, p. 147–158] and [28–33].
Recently Udo et al. [34] obtained explicit parametrization for channel surfaces
with K = const in the space forms.

CRPC surfaces, via a Christoffel-type transformation of certain spherical
nets, were derived in [35] with a focus on discrete models. In work [19], we
can find an effective method for the computation of discrete CRPC surfaces
that provides insight into the shape variety of CRPC surfaces. Since numeri-
cal optimization was involved there, one cannot derive precise mathematical
conclusions, but it can be helpful for further studies.

Isotropic Geometry. As far as we know, the examples of isotropic CRPC
surfaces known before were either minimal (having isotropic mean curvature
H = 0) or paraboloids (having both H = const and the isotropic Gaussian
curvature K = const). However, there is a variety of related works regarding
the conditions H = const or K = const separately. Surfaces with K = const
have received early attention as solutions of the Monge-Ampére equation,
but only within isotropic geometry their geometric constructions, e.g., as
Clifford translational surfaces, are elegant and simple [6]. Invariant surfaces
with H = const or K = const, including the parabolic rotational surfaces, were
studied in detail by da Silva [36]. An exact representation of several types of
ruled surfaces with H = const or K = const can be found in [37, 38]. All helical
surfaces with H = const or K = const were classified in [39, 40]. Translational
surfaces with H = const or K = const were classified in [41], (generalizing the
classical result for H = 0 from [42]) in the case when the generating curves
are planar and in [43] in the case when one of the generating curves is spatial.
However, the classification is still unknown when both generating curves are
spatial.

2 Preliminaries

2.1 Admissible surfaces and isotropic curvatures

Recall that the isotropic semi-norm in space with the coordinates x, y, z is
∥(x, y, z)∥i :=

√
x2 + y2. An affine transformation of R3 that scales the isotropic

semi-norm by a constant factor has the form

x′ = A · x+ b, A =

±h1 ∓h2 0
h2 h1 0
c1 c2 c3


for some values of the parameters b ∈ R3 and h1, h2, c1, c2, c3 ∈ R. Such
transformations form the 8-parametric group G8 of general isotropic similarities.
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The group of isotropic congruences is the 6-parametric subgroup with

h1 = cosϕ, h2 = sinϕ, c3 = 1.

These transformations appear as Euclidean congruences in the projection onto
the plane z = 0, which we call top view. Therefore, isotropic distances between
points and isotropic angles between lines appear in the top view as Euclidean
distances and angles, respectively.

Lines and planes that are parallel to the z-axis are called isotropic or
vertical. They play a special role and are usually excluded as tangent spaces in
differential geometry. A point of a surface is admissible if the tangent plane at
the point is non-isotropic, and a surface is admissible if it has only admissible
points. Hereafter by a surface we mean the image of a proper injective C3 map
of a closed planar domain into R3 with nondegenerate differential at each point,
or, more generally, an embedded connected 2-dimensional C3 submanifold of
R3, possibly with boundary and possibly non-compact.

An admissible surface can be locally represented as the graph of a function,

z = f(x, y).

It is natural to measure the curvature of the surface in a given direction by a
second-order quantity invariant under isotropic congruences and vanishing for a
plane. Thus the isotropic normal curvature in a tangent direction t = (t1, t2, t3)
with ∥t∥i = t21 + t22 = 1 is defined to be the second directional derivative of f ,

κn(t) = (t1, t2) ·
(
fxx fxy
fyx fyy

)
·
(
t1
t2

)
,

and the isotropic shape operator is defined to be the Hessian ∇2(f) of f . Its
eigenvalues κ1 and κ2 are the isotropic principal curvatures and the eigenvectors
are the isotropic principal directions. For κ1 ̸= κ2, the latter are orthogonal in
the top view, and thus also orthogonal in the isotropic sense.

The isotropic mean and Gaussian curvatures are defined respectively by

H :=
κ1 + κ2

2
=

fxx + fyy
2

and K := κ1κ2 = fxxfyy − f2
xy.

An admissible surface has a constant ratio a of isotropic principal curvatures,
or is a CRPC surface, if K ̸= 0, and κ1/κ2 = a or κ2/κ1 = a at each point of
the surface. The latter condition is equivalent to H2/K = (a+ 1)2/(4a).

In particular, for a = −1 we get isotropic minimal surfaces, characterized
by the condition H = 0, i.e., the graphs of harmonic functions. As another
example, for a = 1 we get a unique up to isotropic similarity CRPC surface
2z = x2 + y2, also known as the isotropic unit sphere [7, Section 62, p. 402].

Isotropic principal curvature lines, asymptotic curves, and isotropic charac-
teristic curves are defined analogously to the Euclidean case as curves tangent
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to corresponding directions (we exclude the points where κ1 = κ2). Recall
that two directions (t1, t2, t3) and (s1, s2, s3) at a surface point are conjugate
if fxxt1s1 + fxyt1s2 + fyxt2s1 + fyyt2s2 = 0. One can see that two directions
are conjugate if one is tangent to a curve on the surface, while the other one
is a ruling of the envelope of the tangent planes at points on the curve (see,
e.g., [44, Section 60 ], [45, Sections 2-10]). In particular, the isotropic principal
directions are the ones that are conjugate and orthogonal in the top view. For
K > 0, the isotropic characteristic directions are the ones that are conjugate
and symmetric with respect to the isotropic principal directions in the top view.
For K < 0, they coincide with the asymptotic directions, which are the same
in Euclidean and isotropic geometry.

For isotropic CRPC surfaces, the isotropic characteristic curves intersect
under the constant isotropic angle γ with cot2(γ/2) = |a|. To see this, make the
tangent plane at the intersection point horizontal by an appropriate isotropic
congruence of the form z 7→ z+px+qy and apply a similar assertion in Euclidean
geometry [20, Section 2.1]. All sufficiently smooth Euclidean or isotropic CRPC
surfaces are analytic by the Petrowsky theorem [46, p. 3–4]. We sometimes
restrict our results to the case of analytic surfaces, if this simplifies the proofs.

Example 1. For any paraboloid with a vertical axis, or, equivalently, the graph
of any quadratic function f(x, y) with det∇2(f) ̸= 0, both isotropic principal
curvatures are constant. Hence their ratio a is also constant. This surface can
be brought to the paraboloid z = x2 + ay2 by an appropriate general isotropic
similarity. (Technically, 1/a can also be considered as such a ratio of the same
surface, but z = x2 + ay2 is isotropic similar to z = x2 + y2/a.)

The isotropic principal curvature lines of a non-rotational paraboloid z =
x2 + ay2, where a ̸= 0, 1, are parabolae (parabolic isotropic circles, to be
discussed below) in the isotropic planes x = const and y = const. The rotational
paraboloid z = x2 + ay2 + (a − 1)(x − x0)

2 is tangent to the surface z =
x2 + ay2 along the isotropic principal curvature line x = x0. Thus the surface
is an envelope of a one-parameter family (actually, two families) of congruent
rotational paraboloids with vertical axes (known as parabolic isotropic spheres).

The characteristic curves of the paraboloid z = x2 + ay2, where a ̸= 0, 1,
appear in the top view as lines parallel to x = ±

√
|a|y. For a hyperbolic

paraboloid (a < 0), these curves are the rulings. For an elliptic paraboloid
(a > 0), they are parabolae forming a translational net on the surface.

Thus a paraboloid with a vertical axis is both a translational (see Section 7),
a parabolic rotational (see Section 3), isotropic channel (see Section 4), and,
for a < 0, a ruled surface (see Section 5).

2.2 Isotropic spheres and circles

In isotropic geometry, there are two types of spheres.
The set of all points at the same isotropic distance r from a fixed point O is

called a cylindrical isotropic sphere. In Euclidean terms, it can be visualized as a
right circular cylinder with vertical rulings. Its top view appears as a Euclidean
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circle with the center at the top view of O and the radius r. Any point on the
axis of this cylinder can serve as the center of the same isotropic sphere.

An (inclusion-maximal) surface with both isotropic principal curvatures
equal to a constant A ̸= 0 is a parabolic isotropic sphere. It has the equation

2z = A
(
x2 + y2

)
+Bx+ Cy +D, A ̸= 0,

for some B,C,D ∈ R. Here 1/A is called the radius of the isotropic sphere.
Such isotropic spheres are paraboloids of revolution with vertical axes.

The intersection of an isotropic sphere S with a non-tangential plane P is an
isotropic circle. The isotropic circle is elliptic if P is non-isotropic, parabolic if S
is parabolic and P is isotropic, cylindrical if S is cylindrical and P is isotropic.
The resulting isotropic circle is an ellipse whose top view is a Euclidean circle,
a parabola with a vertical axis, or a pair of vertical lines, respectively.

Recall that two curves x(t) and y(t) have a second-order contact for t = 0,
if x(0) = y(0), x′(0) = y′(0), and x′′(0) = y′′(0). Two non-parameterized
curves have a second-order contact if some of their regular parametrizations
do. The osculating isotropic circle of a spatial curve at a non-inflection point is
an isotropic circle having a second-order contact with the curve at the point.

There is an analog of Meusnier’s theorem in isotropic geometry.

Theorem 2. (See [8, Theorem 9.3], [7, Section 47]) Let an admissible surface Φ
have isotropic normal curvature κn ̸= 0 at a point p ∈ Φ along a surface tangent
line T . Then the osculating isotropic circles of all curves on Φ that are tangent
to T at p lie on the parabolic isotropic sphere of radius 1/κn tangent to Φ at p.

3 Rotational surfaces

3.1 Isotropic rotational CRPC surfaces

Euclidean rotations about the z-axis are also isotropic congruences. A surface
invariant under these rotations is called isotropic rotational, as well as the
image of the surface under any isotropic congruence.

Looking for isotropic rotational CRPC surfaces, we consider the graph of
a smooth function z = h(r) of the radial distance r :=

√
x2 + y2. Profiles

x/y = const and parallel circles r = const give a principal parameterization
in isotropic geometry, due to the symmetries. The isotropic profile curvature
κ2 equals the 2nd derivative h′′(r), and κ1 = h′(r)/r by Meusnier’s theorem
(Theorem 2). Hence κ2/κ1 = a amounts to solutions of ah′ = rh′′. Up to
isotropic similarities, this yields the profile curves

h(r) =

{
r1+a, if a ̸= −1;

log r, if a = −1,
(1)

and the ones with a replaced by 1/a. We have arrived at the following result.
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Proposition 3. (See Figure 2) An admissible isotropic rotational surface has
a constant ratio a ̸= 0 of isotropic principal curvatures if and only if it is
isotropic similar to a subset of one of the surfaces

z = (x2 + y2)(1+a)/2 or z = (x2 + y2)(1+a)/(2a), if a ̸= −1; (2)

z = log(x2 + y2), if a = −1. (3)

Fig. 2: Rotational isotropic CRPC surfaces (from the left to the right): the first
of two surfaces (2) for a > 0, 0 > a > −1, and a < −1 respectively; surface (3).

Let us discuss the geometry of the resulting surfaces, namely, the first of
two surfaces (2) for a ̸= 0,±1. Profile curves (1) are also known as W-curves or
(−a)-catenaries [11, Corollary 1]: they are paths of one-parameter continuous
subgroups of the group of affine maps, actually, of G8.

The isotropic characteristic curves intersect the first isotropic principal
curvature lines (parallel circles) under the constant isotropic angle γ/2 with
cot2(γ/2) = |a|. Since isotropic angles appear as Euclidean angles in the top
view, the top views of the former must be logarithmic spirals, which intersect
the radial lines at angles (π− γ)/2. Hence, in the cylindrical coordinate system
(r, ϕ, z), the isotropic characteristic curves are isotropic congruent to

r(ϕ) = eϕ/
√

|a|, z(ϕ) = eϕ(1+a)/
√

|a|.

These curves are again W-curves of a one-parametric subgroup of the isotropic
similarity group G8, and the rotational surfaces themselves are generated by the
subgroup. Its elements are compositions of a rotation about the z-axis through
some angle ϕ, a homothety with the center at the origin and the coefficient

eϕ/
√

|a|, and the scaling by a factor of eϕa/
√

|a| in the vertical direction.
The simplest cases are a = ±1. We obtain the isotropic sphere z = r2 and

the logarithmoid z = log r. The latter is the only isotropic minimal surface of
revolution (besides planes and up to general isotropic similarities) and can be
viewed as the isotropic analog of the catenoid [47, Section 4.3(a)].

Also of interest is the case a = −1/2, which leads to surfaces obtained by
rotating the parabola z2 = r about its tangent at the vertex. Recall that in
Euclidean geometry, the ratio κ2/κ1 = −1/2 also leads to parabolae as profiles,
but rotated about the directrix [19]. Both surfaces are algebraic of order 4.

Clearly, we get rational algebraic surfaces for rational values of a ̸= −1.
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Yet another observation is that analytic rotational isotropic CRPC surfaces
cannot intersect the rotation axis (at a nonsingular point) unless a or 1/a is a
positive odd integer.

3.2 Euclidean rotational CRPC surfaces

It is worth comparing profile curves (1) of rotational CRPC surfaces with their
analogs in Euclidean geometry ([14], [15, Ex. 3.27], [18, Eq. (3.2)], [19, Eq. (7)]):

h(r) =

∫
ra dr√
1− r2a

=
r1+a

1 + a
2F1

(
1

2
,
1

2
+

1

2a
;
3

2
+

1

2a
; r2a

)
, a ̸= −1,−1

3
, . . .

(4)

Here 2F1(α, β; γ; z) is the Gauss hypergeometric function (see e.g. [48, Ch. V,
Section 7] for a definition), ra ≤ 1, and 1/a is not a negative odd integer. The
latter equality is checked in [49, Section 3].

3.3 Parabolic rotational CRPC surfaces

In isotropic geometry, there is a second type of rotations, so-called parabolic
rotations, given by

x′ = x+ t,

y′ = y,

z′ = t2/2 + (x+ by)t+ z,

for some parameters b, t [8, Eq. (2.14)]. A surface invariant under these trans-
formations for b fixed and t running through R is called parabolic rotational, as
well as the image of the surface under any isotropic congruence.

It is not hard to find all parabolic rotational CRPC surfaces. Indeed, let
the graph of a smooth function z = z(x, y) be invariant under the parabolic
rotations. The section x = 0 is the graph of the function h(y) := z(0, y).
Applying the parabolic rotation with t = x to the latter curve, we get the identity
z(x, y) = x2/2 + bxy + h(y). Then the isotropic Gaussian and mean curvatures
are K = h′′− b2 and H = (h′′+1)/2. Then the equation H2/K = (a+1)2/(4a)
is equivalent to a(h′′ + 1)2 = (a+ 1)2(h′′ − b2). Hence h′′ = const and z(x, y)
is a quadratic function. By Example 1, we arrive at the following proposition.

Proposition 4. An admissible parabolic rotational surface has a constant ratio
a ̸= 0 of isotropic principal curvatures if and only if it is isotropic similar to a
subset of the paraboloid z = x2 + ay2.

An analogous result for constant mean curvature surfaces was obtained
in [11, Proposition 3]).

In this case, both isotropic principal curvatures are constant. In the next
section, we show that this is the only surface with this property (Theorem 8).
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4 Channel surfaces

Now we turn to channel surfaces and show that all channel CRPC surfaces are
rotational (or parabolic rotational). Thus we will not encounter new surfaces.

4.1 Euclidean channel CRPC surfaces

A channel surface C is defined as the envelope of a smooth one-parameter
family of spheres S(t), i.e., the surface C that is tangent to each sphere S(t)
along a single closed curve c(t) so that the curves c(t) cover C. The curves c(t)
are called characteristics (not to be confused with the characteristic curves
discussed in Section 2). Each characteristic c(t) is a circle which is a principal
curvature line on C (see Lemma 6). The locus of sphere centers s(t) is referred
to as a spine curve and their radii r(t) constitute the radius function. Special
cases of channel surfaces are pipe surfaces, being envelopes of congruent spheres.

For simplicity, we restrict ourselves to analytic surfaces. (Recall that all
sufficiently smooth Euclidean or isotropic CRPC surfaces are analytic by the
Petrowsky theorem [46, p. 3–4].) If C is analytic (and has no umbilic points),
then the family S(t) is also analytic up to a change of the parameter t (because
the principal directions, hence the principal curvature lines c(t), hence the
spheres S(t) analytically depend on a point of C). Thus by an analytic channel
surface we mean an analytic surface which is the envelope of a one-parameter
analytic family of spheres S(t), i.e, a family such that both s(t) and r(t) are
real-analytic functions.

We would like to give a short proof of the following result by Havĺıček [22].

Theorem 5. An analytic channel Weingarten surface is a rotational or pipe
surface. In particular, if an analytic channel surface has a constant ratio of
principal curvatures, then it is rotational.

We start by recalling a well-known proof of the basic properties of
characteristics; this will help us in establishing their isotropic analogs.

Lemma 6. Under the notation at the beginning of Section 4, c(t) is a principal
curvature line on C, and the principal curvature along c(t) is 1/r(t). If the
family S(t) is analytic then c(t) is a circle with the axis parallel to s′(t). If
r′(t) ̸= 0 then s′(t) ̸= 0.

Proof Since S(t) and C are tangent along c(t), and c(t) is a principal curvature line
of S(t), it is a principal curvature line of C as well by Joachimsthal theorem.

Let us compute the principal curvature κ1 along c(t). Let p be a point on c(t) and
T be the tangent line to C through p. Then by Meusnier’s theorem, the osculating
circle of c(t) lies on the sphere of radius 1/κ1 that is tangent to C at p. On the other
hand, c(t), hence its osculating circle, lies on the sphere S(t) of radius r(t) that is
also tangent to C at p. This implies that κ1 = 1/r(t).
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Distinct characteristics c(t1) and c(t2) cannot have two common points or be
tangent to each other; otherwise S(t1) and S(t2) coincide and would not be tangent
to C along a single closed curve. For t2 close to t1, the curves c(t1) and c(t2) cannot
have a unique non-tangential intersection point because a neighborhood of c(t1) is
tangent to S(t1) along c(t1) and hence is orientable. By continuity, for each t2 ̸= t1
the curves c(t1) and c(t2) are either disjoint or coincide.

Let us compute c(t). The sphere S(t) has the equation (x− s(t))2 = r(t)2, hence
c(t) is contained in the intersection of S(t) with the set (x − s(t))s′(t) = r′(t)r(t);
cf. [50, Section 5.13]. If s′(t) ̸= 0, the latter is a plane orthogonal to s′(t), hence
c(t) is a circle with the axis parallel to s′(t) because c(t) is a closed curve by the
definition of a channel surface. If s′(t) = 0, then c(t) is still a circle as a closed curve
containing the limit of circles c(tn), where tn → t and s′(tn) ̸= 0 (the limit exists by
analyticity and does not degenerate to a point because a family of pairwise disjoint
circles disjoint from a curve on a surface cannot shrink to a point on the curve).

Finally, if r′(t) ̸= 0 then s′(t) ̸= 0 because c(t) ̸= ∅. □

We now prove the theorem modulo a technical lemma and then the lemma.

Proof of Theorem 5 Consider an analytic channel Weingarten surface C and a sphere
S = S(t) of the enveloping family. They are tangent along the characteristic c = c(t).
By Lemma 6 the principal curvature along the circle c, say κ1 = κ1(t), is constant
(it is equal to the inverse of the radius of S(t)). If the Weingarten relation is not
κ1 = const then the other principal curvature κ2 = κ2(t) has to be constant along c.

First, let us consider the general-position case: κ1(t), κ2(t), κ
′
1(t), κ

′
2(t) ̸= 0 and

κ1(t) ̸= κ2(t) for all t. At each point of c, draw an osculating circle of the section
of C by the plane orthogonal to c. Since all such circles have curvature κ2 and are
tangent to the sphere S, they are obtained by rotations of one circle about the axis
of c and form a rotational surface D. By construction, C and D have a second-order
contact along c. Then Lemma 7 below asserts that at least in the general-position
case, the spine curve s(t) of C has a second-order contact with the spine curve of D,
i.e., the axis of c(t). Since s(t) has a second-order contact with a straight line for all
t, it is a straight line and C is a rotational surface.

Next, let us reduce the theorem to the above general-position case.
If κ1(t) ≡ κ2(t) as functions in t, then C is a subset of a sphere because κ1(t) ̸= 0.
If κ1(t) = const, then C is a pipe surface because 1/κ1(t) is the radius of S(t).
If κ2(t) = const, then C is a rotational surface. Indeed, consider a principal

curvature line orthogonal to c(t) and let p(t) be its intersection point with c(t). Let
n(t) be the surface unit normal at p(t). Then n′(t) = κ2(t)p

′(t). Hence the curvature
center p(t)− n(t)/κ2(t) = const (or n(t) = const for κ2(t) = 0). Thus the principal
curvature line lies on the sphere of radius 1/κ2(t) that is tangent to the surface (or on
a plane for κ2(t) = 0). For the other principal curvature lines orthogonal to c(t), such
spheres (or planes) are obtained by rotations about the axis of the circle c(t). Then
C is a subset of the envelope of those spheres (or planes) and hence it is rotational.

Otherwise, restrict the range of t to an interval where the above general-position
assumptions are satisfied. The envelope of the resulting sub-family S(t) is rotational
by the above general-position case. Then the whole C is rotational by the analyticity.

Finally, for a CRPC surface, the condition κ1(t) = const implies κ2(t) = const
and yields again to a rotational surface. □
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The deep idea beyond this proof is that a channel surface C has a second-
order contact with the osculating Dupin cyclide D [51] along a characteristic,
and the spine curves of C and D also have a second-order contact. Here D is
the limit of the envelope of all spheres tangent to three spheres S(t1), S(t2),
S(t3) for t1, t2, t3 tending to t. The spine curves of C and the envelope have 3
colliding common points s(t1), s(t2), s(t3), leading to a second-order contact.
For a Weingarten surface C, the osculating Dupin cyclides D turn out to be
rotational, with straight spine curves, hence the same must be true for C itself.

Although this construction gives geometric insight, passing to the limit
t1, t2, t3 → t rigorously is a bit technical. Thus we complete the proof by a
different argument relying on additional curvature assumptions.

Lemma 7. Under the notation of the proof of Theorem 5 and the assumptions
κ1(t), κ2(t), κ

′
1(t), κ

′
2(t) ̸= 0 and κ1(t) ̸= κ2(t) for all t, the spine curve s(t) has

a second-order contact with the axis of the circle c(t).

Proof In what follows we fix a value of t, say, t = 0, and assume that t is sufficiently
close to this value. It is also convenient to assume that κ′2(0)(κ1(0)− κ2(0)) > 0 and
t > 0. Since κ′1(0) ̸= 0, by Lemma 6 it follows that s′(0) is nonzero and parallel to
the axis of c(0). It remains to prove that the distance from s(t) to the axis is O(t3).

We do it by reducing to a planar problem; see Fig. 3 to the left. Take a plane P
passing through s(0) and parallel to s′(0) and s′′(0) (an “osculating plane” of s(t)).
It contains the axis of c(0). The section of c(t) by the plane P consists of two points
c1(t) and c2(t). Let c1 and c2 be the two curves formed by these points. The section
of C by P coincides with c1 and c2 because the characteristics cover the surface. The
section of S(t) is a circle S1(t) tangent to c1 and c2 at c1(t) and c2(t). Let D1(t) and
D2(t) be the osculating circles of c1 and c2 at c1(t) and c2(t). Orient each circle S1(t)
counterclockwise and fix the orientations of D1(t) and D2(t) such that the contacts
are oriented. Let s1(t) be the center of S1(t). Since P ∥ s′(0), s′′(0), it follows that the
distance between s1(t) and s(t) is O(t3). Thus it suffices to prove that the distance
from s1(t) to the bisector of c1(0)c2(0) is O(t3).
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Fig. 3: The notation in the proofs of Lemmas 7, 13, and 19 (from the left to
the right).
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Next, let us prove that S1(t) and D1(0) are disjoint. For this purpose, we compute
the derivative of the signed curvature k1(t) of the curve c1(t) at t = 0. By the Euler
and Meusnier theorems, we get

k1(t) =
κ1(t) cos

2 ∠(c1, c(t)) + κ2(t) sin
2 ∠(c1, c(t))

cos∠(s(t)c1(t), P )
.

Differentiating, we get k′1(0) = κ′2(0) ̸= 0 because ∠(c1, c(0)) = π/2 and
∠(s(0)c1(0), P ) = 0. Since the signed curvatures of S1(0) and D1(0) are κ1(0) and
κ2(0) respectively, by the assumption κ′2(0)(κ1(0) − κ2(0)) > 0 it follows that the
signed curvature of D1(t) is between the signed curvatures of D1(0) and S1(t) for
t > 0 small enough. By the Tait–Kneser theorem, D1(t) is disjoint from D1(0), and
by construction, D1(t) has an oriented contact with S1(t). Thus D1(0) and S1(t) are
separated by D1(t), hence are disjoint.

Finally, we estimate the distance from s1(t) to the bisector of c1(0)c2(0). Since c1
and D1(0) have second-order contact, it follows that c1(t) is within distance O(t3)
from D1(0). Then the distance between the disjoint circles S1(t) and D1(0) is O(t3).
Analogously, the distance between S1(t) and D2(0) is O(t3). Then the difference in
the distances from the center s1(t) to the centers of D1(0) and D2(0) is O(t3). Since
D1(0) and D2(0) are symmetric with respect to the bisector of c1(0)c2(0), it follows
that the distance from s1(t) to the bisector is O(t3), which proves the lemma. □

4.2 Surfaces with both isotropic principal curvatures
constant

As a motivation for studying isotropic channel surfaces, and also as one step
in their classification, let us find all surfaces with both isotropic principal
curvatures constant.

Theorem 8. An admissible surface has constant nonzero isotropic principal
curvatures κ1 and κ2 if and only if it is isotropic congruent to a subset of the
paraboloid 2z = κ1x

2 + κ2y
2.

Let us see how the notion of an isotropic channel surface naturally arises in
the proof of this theorem.

Lemma 9. Assume that the isotropic principal curvature κ1 along an isotropic
principal curvature line c of an admissible surface C is constant and nonzero.
At each point of c, take the parabolic isotropic sphere with the radius 1/κ1 that
is tangent to C at this point. Then all these isotropic spheres coincide.

Proof By the center of a parabolic isotropic sphere of radius r we mean the point
obtained from the vertex of the paraboloid by the translation by the vector (0, 0, r).
The unique parabolic isotropic sphere of radius r with the center m = (m1,m2,m3)
is given by the equation

2(z −m3 + r) =
1

r

(
(x−m1)

2 + (y −m2)
2
)
. (5)

Beware that the notion of a center is not invariant under isotropic congruences, but
similar notions are common in isotropic geometry [8, Chapter 9].
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The isotropic curvature center of C at a point p = (x, y, z) ∈ c is the center of the
parabolic isotropic sphere of radius r = 1/κ1 that is tangent to C at p. It is given by

m =

 x− 1
κ1

fx

y − 1
κ1

fy

z − 1
2κ1

(
f2x + f2y − 2

)
 ,

where we locally represent C as the graph of a function z = f(x, y). This formula is
obtained from the three equations (5), fx = κ1(x−m1), fy = κ1(y −m2).

Now let p(t) = (x(t), y(t), f(x(t), y(t))) run through the isotropic principal curva-
ture line c and let m(t) be the corresponding isotropic curvature center. It suffices to
prove that m′(t) = 0. We omit the arguments of the functions x, y, f in what follows.

Since c is the isotropic principal curvature line, it follows that{
fxxx

′ + fxyy
′ = κ1x

′

fxyx
′ + fyyy

′ = κ1y
′,

hence

m′ =

 x′ − 1
κ1

fxxx
′ − 1

κ1
fxyy

′

y′ − 1
κ1

fxyx
′ − 1

κ1
fyyy

′

fxx
′ + fyy

′ − fxx
′ − fyy

′

 = 0.

□

The meaning of this lemma is that κ1 = const implies that the surface is
essentially an isotropic pipe surface, which we are going to define now.

An isotropic channel surface is the envelope of a smooth one-parameter
family of parabolic isotropic spheres S(t), i.e. the surface C tangent to each
isotropic sphere S(t) along a single curve c(t) without endpoints so that the
curves c(t) cover C. The curves c(t) are called characteristics. If the radii of
the isotropic spheres are constant, then C is called an isotropic pipe surface.

To proceed, we need an isotropic analog of Lemma 6 above.

Lemma 10. Consider a characteristic c(t) of an isotropic channel surface C.
Let r(t) be the radius of the isotropic sphere S(t) that is tangent to C along c(t).
Then c(t) is an isotropic principal curvature line on C and the isotropic principal
curvature along c(t) is 1/r(t). If r′(t) ̸= 0 then c(t) is an elliptic isotropic circle.
If r(t) = const then for some t the curve c(t) is a parabolic isotropic circle.

Proof Since c(t) is an isotropic principal curvature line of S(t), then by the isotropic
Joachimsthal theorem [6, Section 36], it is an isotropic principal curvature line of C.

Let p be a point on c(t) and T be the tangent line to C through p. Then by
Meusnier’s theorem (Theorem 2), the osculating isotropic circle of c(t) lies on the
isotropic sphere of radius 1/κn that is tangent to C at p. Here κn is the isotropic
principal curvature along c(t) because c(t) is an isotropic principal curvature line.

On the other hand, c(t), hence its osculating isotropic circle, lies on the isotropic
sphere S(t) of radius r(t) that is also tangent to C at p. This implies that κn = 1/r(t).

Now let S(t) have the equation

2z = A(t)
(
x2 + y2

)
+B(t)x+ C(t)y +D(t).
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Then c(t) is contained in the set defined by the system (cf. [50, Section 5.13])A(t)
(
x2 + y2

)
+B(t)x+ C(t)y +D(t)− 2z = 0,

A′(t)
(
x2 + y2

)
+B′(t)x+ C′(t)y +D′(t) = 0.

(6)

If r′(t) ̸= 0 then A′(t) = r′(t)/r(t)2 ̸= 0 because r(t) = 1/A(t). Remove the quadratic
terms in the second equation by subtracting the first equation with the coefficient
A′(t)/A(t) ̸= 0. This introduces a term linear in z into the second equation. Thus c(t)
is the intersection of S(t) with a non-isotropic plane, hence an elliptic isotropic circle.

Finally, assume that r(t) = const so that A′(t) = 0. There exists t such that at
least one of the derivatives B′(t), C′(t), D′(t) ̸= 0, otherwise all S(t) coincide and
there is no envelope. Then the second equation of (6) defines an isotropic plane. Thus
c(t) is the intersection of S(t) with the plane, hence a parabolic isotropic circle. □

This lemma and its proof remain true, if we allow the characteristics c(t)
to have endpoints (in the definition of an isotropic channel surface); then c(t)
is going to be an arc of an isotropic circle instead of a full one.

Proof of Theorem 8 By Lemma 9, locally there are two families of congruent parabolic
isotropic spheres of radii 1/κ1 and 1/κ2 respectively that are tangent to the surface
along isotropic principal curvature lines. By the last assertion of Lemma 10, one of the
characteristics c(t) of one family is an arc of a parabolic isotropic circle. Performing
an appropriate isotropic congruence, one can make the parabolic isotropic sphere S(t)
that is tangent to the surface along c(t) symmetric with respect to the plane of c(t).
The isotropic spheres of the other family are congruent and touch S(t) at the points
of c(t). Hence they are obtained by parabolic rotations of one isotropic sphere, and
thus the surface is locally parabolic rotational. By Proposition 4, the theorem follows.
(The envelope of the other family can also be computed directly.) □

4.3 Isotropic channel CRPC surfaces

The classification of isotropic channel CRPC surfaces is similar to the Euclidean
ones, but in addition to rotational surfaces, we get parabolic rotational ones.

An analytic isotropic channel surface is an analytic surface that is the
envelope of a one-parameter analytic family of parabolic isotropic spheres.

Theorem 11. An analytic isotropic channel Weingarten surface is an isotropic
rotational or isotropic pipe surface. In particular, an analytic isotropic channel
surface with a constant nonzero ratio of isotropic principal curvatures is a
subset of an isotropic rotational or parabolic rotational one.

The proof is analogous to the Euclidean one, but we consider the centers
curve instead of the spine curve. If the characteristics c(t) are elliptic isotropic
circles, then the locus of their centers s(t) is called the centers curve.

Lemma 12. If the centers curve of an analytic isotropic channel surface is
contained in a vertical line, then the surface is isotropic rotational.
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Proof Bring the vertical line to the z-axis by an appropriate isotropic congruence.
Use the notation from the proof of Lemma 10. If A′(t) ̸= 0, then the second equation
of (6) defines a circle, which represents the top view of the characteristic c(t). Thus
the top view of all the characteristics c(t) are circles with the center at the origin.
Therefore B′(t) = C′(t) = 0 for all t, hence B(t) and C(t) are constants. Then the
second equation of (6) takes form x2 + y2 = −D′(t)/A′(t). Substituting it into the
first equation of (6), we obtain that all the isotropic circles c(t) lie in the planes
parallel to one plane B(0)x+C(0)y− 2z = 0. By continuity, this remains true for the
roots of the equation A′(t) = 0. Therefore the surface is isotropic rotational. □

To ensure that the centers curve s(t) is a vertical line, we need the following
two technical lemmas. In the first one, for a line segment joining two symmetric
parabolic isotropic circles, we express the distance from the midpoint of the
segment to the symmetry axis in terms of the replacing angles between the
segment and the isotropic circles. The (oriented) replacing angle between two
non-isotropic lines lying in one isotropic plane is the difference in their slopes.

Lemma 13. (See Fig. 3 to the middle.) Assume that two parabolic isotropic
circles D1 and D2 of isotropic curvature A lie in an isotropic plane and are
symmetric with respect to an isotropic line L. Let the distance between their
axes be 2B ̸= 0. Let two points p1 and p2 lie on D1 and D2 respectively. Let
the segment p1p2 have isotropic length d and form replacing angles α1 and α2

with D1 and D2 respectively. Then the isotropic distance from the midpoint of
p1p2 to the line L equals |α1 + α2|d/|8AB|.

Proof Without loss of generality, D1 and D2 lie in the xz-plane and have the equations
z = A(x ± B)2. If the x-coordinates of p1 and p2 are x1 and x2, then we compute
directly |α1 + α2| = 4|AB| · |x1 + x2|/|x1 − x2|. Since |x1 − x2| = d and |x1 + x2|/2
is the desired isotropic distance, the lemma follows. □

Lemma 14. Under the notation of Lemma 10, assume that the second principal
curvature is constant along c(t) and different from the first one. If r′(t) ̸= 0,
then s′(t) is vertical (or zero).

Proof Fix a particular value of t, say, t = 0, and assume that t is sufficiently close to
this value. It suffices to prove that the isotropic distance from s(t) to s(0) is O(t2).

We do it by reduction to a planar problem. See Fig. 3 to the middle. Since
r′(0) ̸= 0, by Lemma 10 it follows that c(0) is an elliptic isotropic circle. Performing
an isotropic congruence of the form z 7→ z + px+ qy, we can take c(0) to a horizontal
circle. Take an isotropic plane P passing through s(0) and parallel to s′(0). The
section of c(t) by the plane P consists of two points c1(t) and c2(t). The section of C
coincides with the two curves c1(t) and c2(t) because the characteristics cover the
surface. The section of S(t) is a parabolic isotropic circle that is tangent to the two
curves at the points c1(t) and c2(t). Then the chord c1(t)c2(t) forms equal replacing
angles (of opposite signs) with the tangents at c1(t) and c2(t). It suffices to prove
that the isotropic distance from the midpoint of the chord to s(0) is O(t2).
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Let us estimate how those replacing angles and the midpoint change if we replace
the two curves with their osculating isotropic circles D1 and D2 (possibly degenerating
into lines) at the points c1(0) and c2(0). Since the second principal curvature is
constant along c(0) and the plane of c(0) is horizontal, it follows that D1 and D2 are
symmetric with respect to the vertical line L through s(0). Since the first principal
curvature is different, it follows that D1 ̸= D2. Let p1(t) and p2(t) be the points of
D1 and D2 lying on the vertical lines through the points c1(t) and c2(t) respectively.
The replacing angle between the tangents to the respective curves at the points p1(t)
and c1(t) is O(t2) because D1 is osculating. The same is true for the tangents at
p2(t) and c2(t). The replacing angle between p1(t)p2(t) and c1(t)c2(t) is O(t3). Thus
the replacing angles α1(t) and α2(t) which p1(t)p2(t) forms with D1 and D2 satisfy
α1(t) +α2(t) = O(t2). Now the result follows from Lemma 13 and its analog for lines
D1 and D2. □

Proof of Theorem 11 Consider an analytic isotropic channel Weingarten surface C
and the isotropic parabolic sphere S(t) of radius r(t) that is tangent to C along the
characteristic c(t). Then according to Lemma 10, the isotropic principal curvature
κ1 along c(t) is 1/r(t). If the Weingarten relation is not κ1 = const, then the other
isotropic principal curvature κ2 is constant along c(t).

If r(t) = const or κ1 ≡ κ2, then we get an isotropic pipe surface or an isotropic
sphere. Otherwise, restrict the range of t to an interval where r′(t) ̸= 0 and κ1 ̸= κ2.
By Lemma 14, the centers curve s(t) has vertical tangent vector s′(t) for all t. Then s(t)
is contained in a vertical line, and by Lemma 12 the surface C is isotropic rotational.

Finally, suppose that C has a constant ratio of the isotropic principal curvatures.
Then it is Weingarten. As we have proved, it is an isotropic rotational or pipe surface.
In the latter case, κ1 = const by Lemma 10, hence κ2 = const, and C is a subset of a
parabolic rotational surface by Theorem 8. □

5 Ruled surfaces

Let us now turn to ruled surfaces. In Euclidean geometry we will not encounter
a new surface, but in isotropic geometry there is a non-trivial CRPC ruled
surface.

Our arguments are based on line geometry. For the concepts used in the
following, we refer to [52]. The methods for ruled surfaces and channel surfaces
are actually related via Lie’s line-sphere correspondence. We again restrict
ourselves to analytic surfaces (with nonvanishing Gaussian curvature); then the
rulings form an analytic family because the direction of a ruling is asymptotic.

An analytic ruled surface is an analytic surface covered by an analytic
family of line segments. The lines containing the segments are the rulings.

5.1 Euclidean ruled CRPC surfaces.

We start with the Euclidean case and show the following result.

Proposition 15. The only ruled surfaces with a constant nonzero ratio of
principal curvatures are the ruled minimal surfaces, i.e., helicoids.
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Proof A ruled CRPC surface must be skew (without torsal rulings) and its asymptotic
curves should intersect under a constant angle γ [20, Section 2.1]. One family of
asymptotic curves is the rulings. Let us fix a ruling R and consider the other asymptotic
tangents A(p) (different from R) at all points p ∈ R. They form a quadric L(R) (the
so-called Lie quadric of R; see e.g. [52, Corollary 5.1.10]). If the angle between R
and A(p) is constant, it can only be a right angle (so that L(R) is a right hyperbolic
paraboloid). Indeed, if the angle γ is not a right one, then the ideal points of the lines
A(p) form a conic cω in the ideal plane ω (ideal conic of a rotational cone with axis R)
which does not contain the ideal point Rω of R. However, Rω and cω should lie in the
same curve L(R)∩ω (conic or pair of lines), which is not possible. So, γ = π/2 and our
surface is a skew ruled minimal surface, i.e. a helicoid by the Catalan theorem. □

Remark 16. Here we used the famous Catalan theorem stating that the only
ruled minimal surfaces are helicoids and planes. Remarkably, in Lemmas 18–20
below we actually obtain a line-geometric proof of this classical result. Indeed,
we have just shown that the Lie quadric of each ruling must be a right hyperbolic
paraboloid. Then Lemma 18 and its proof remain true in Euclidean geometry.
Then without loss of generality, all the rulings are parallel to the plane z = 0.
Since the asymptotic directions and the rulings are orthogonal, their top views
are also orthogonal, and our Euclidean minimal surface is an isotropic minimal
surface as well. The Catalan theorem now reduces to Lemmas 19–20, where
the case of a hyperbolic paraboloid is easily excluded.

The proof of Proposition 15 already indicates that there is hope to get a
ruled CRPC surface to a constant a ̸= −1 in isotropic geometry. This is what
we will now pursue.

5.2 Isotropic ruled CRPC surfaces.

Theorem 17. (See Fig. 4) An admissible analytic ruled surface has a constant
ratio a < 0 of isotropic principal curvatures if and only if it is isotropic similar
to a subset of either the hyperbolic paraboloid z = x2 + ay2, or the helicoid

r(u, v) =

u cos vu sin v
v

 , if a = −1, (7)

or the surface

ra(u, v) =


u cos v
u sin v

exp

(
a+1√
|a|

v

)
 , if a ̸= −1. (8)

Proof This follows directly from Lemmas 18–20 below (which themselves rely on
standard Lemmas 31–32 from Appendix A). □
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Fig. 4: Ruled isotropic CRPC surfaces (from the left to the right): a hyperbolic
paraboloid, helicoid (7), and spiral ruled surface (8).

Lemma 18. An admissible analytic ruled surface with a constant nonzero ratio
of isotropic principal curvatures is a conoidal (or Catalan) surface, i.e. all the
rulings are parallel to one plane.

Proof Let us show that the Lie quadric of each ruling R (see [52, Corollary 5.1.10]) is
a hyperbolic paraboloid. Since the surface is admissible, the top view R′ of R is not
a point. Since isotropic angles are seen as Euclidean angles in the top view, the top
views A(p)′ of the asymptotic tangents A(p) at points p of R must form the same
angle γ with R′. Hence the lines A′(p) are parallel to each other, implying that the
quadric formed by the lines A(p) is a hyperbolic paraboloid.

Then the second family of rulings (distinct from A(p)) of the quadric intersects
the ideal plane ω by a line Aω. Since the Lie quadric has a second-order contact
with our surface [52, Theorem 5.1.9], it follows that Aω has a second-order contact
with the ideal curve sω formed by the ideal points of the rulings of our surface [52,
Proposition 5.1.11]. As a curve that has an osculating straight line at each point, the
curve sω is itself a straight line and therefore our surface must be a conoidal surface
(sω cannot degenerate to a point as the isotropic Gaussian curvature K ̸= 0). □

Lemma 19. An admissible analytic conoidal surface with a constant nonzero
ratio of isotropic principal curvatures is a conoid, i.e., all the rulings are parallel
to a fixed plane and intersect a fixed line. The fixed line is either vertical or
belongs to another family of rulings. In the latter case, the surface is a hyperbolic
paraboloid with a vertical axis.

Proof By the analyticity, it suffices to prove the lemma for an arbitrarily small part
of our surface. Thus in what follows we freely restrict and extend our surface.

Let Rt be the analytic family of the rulings of the surface. Since K ≠ 0, it follows
that there are no torsal rulings; in particular, the surface is not a plane.

Let R′
t be the top view of Rt. By Lemma 31, one of the following cases (i)–(iii)

holds, after we restrict t to a smaller interval.
Case (i): all R′

t have a common point. Then all Rt intersect one vertical line and
the lemma is proved.

Case (ii): all R′
t are parallel. Then due to the fixed angle between the asymptotic

directions in the top view, the second family of asymptotic curves also appears as
parallel lines in the top view. Hence those curves lie in the isotropic planes. However,
at non-inflection points of the asymptotic curves the osculating planes are the tangent
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planes of the surface [53, Page 28]. Thus these tangent planes needed to be isotropic,
which is not possible for an admissible surface. Hence, there are no non-inflection
points, both families of asymptotic curves are straight lines, and our surface is a
hyperbolic paraboloid with a vertical axis.

Case (iii): all R′
t touch one curve e (envelope). Let us show that this case is

actually impossible.
For this purpose, we are going to extend our surface to reach the envelope. Let

h(t) be the Euclidean distance from the ruling Rt to the fixed plane parallel to all
the rulings. We have h(t) ̸= const because our surface is not a plane. By continuity,
there is an interval I where h′(t) has a constant sign. Then the union

⋃
t∈I Rt is an

analytic surface containing a part of the initial surface. The resulting surface is not
admissible: By Lemma 31 the envelope forms a part of the boundary of the top view
of the surface, hence the tangent planes are isotropic at the points with the top views
lying on the envelope.

Switch to the new surface
⋃

t∈I Rt. By analyticity, it still has a constant ratio
of isotropic principal curvatures (at the admissible points). The Gaussian curvature
still vanishes nowhere because there are no torsal rulings. Thus the whole surface,
including non-admissible points, is covered by two analytic families of asymptotic
curves (recall that the asymptotic curves are the same in Euclidean and isotropic
geometry, hence they acquire no singularities at the non-admissible points). One of
the families consists of the rulings, and at admissible points, the other one crosses
them under constant angle γ in the top view.

Now we prove that there is an asymptotic curve α containing a non-admissible
point O but not entirely consisting of non-admissible points. See Fig. 3 to the right.
The top view α′ needs to have a common point with the envelope e. Take a, b ∈ I close
enough so that the angle between R′

a and R′
t is an increasing function in t on [a, b]

not exceeding π − γ. Let A′ and B′ be the tangency points of R′
a and R′

b with the
envelope, and C ∈ Ra be the point with the top view C′ := R′

a∩R′
b. Then the second

asymptotic curve α through C is the required one. Indeed, the angle between its top
view α′ and R′

a equals γ, hence α′ enters the curvelinear triangle A′B′C′ formed by
the arc AB of the envelope and two straight line segments B′C′ and C′A′. Since the
angle between α′ and R′

t is constant and the angle between R′
a and R′

t is increasing,
the curve α′ cannot reach the sides B′C′ and C′A′ as long as it remains smooth.
Since the asymptotic curves extend till the surface boundary, it follows that α′ has a
common point with the envelope and α has a non-admissible point O, as required.

Since α does not entirely consist of non-admissible points, it follows that at the
other close enough points P ̸= O of α, the tangents cross the rulings under constant
angle γ in the top view. By the continuity, the limit L′ of the top views of the tangents
crosses the top view of the ruling through O under angle γ.

Now let us prove that L′ must be the top view of the ruling through O, and thus
get a contradiction.

If the tangent of α at O is not vertical, then L′ coincides with the top view of the
tangent, hence with the top view of the tangent plane at O, hence with the top view
of the ruling through O.

If the tangent of α at O is vertical, then by Lemma 32 the limit L′ coincides
with the top view of the limit of the osculating planes at the points of α. But the
osculating plane of an asymptotic curve at non-inflection points is the tangent plane,
and the points close enough to O are non-inflection. Hence we again obtain the top
view of the tangent plane at O, equal to the top view of the ruling through O.

This contradiction shows that case (iii) is impossible, completing the proof. □
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Lemma 20. An admissible conoid has a constant ratio a ̸= 0 of isotropic
principal curvatures if and only if it is isotropic similar to a subset of one of
the surfaces z = x2 + ay2, (7), or (8) from Theorem 17.

Proof Let all the rulings of the conoid be parallel to a fixed plane α and intersect a
fixed line l. We have two possibilities indicated in Lemma 19.

If l ̸∥ Oz then by Lemma 19 the surface is a hyperbolic paraboloid with a vertical
axis. By Example 1 it is isotropic similar to a subset of the paraboloid z = x2 + ay2.

If l ∥ Oz then performing an isotropic similarity, we can take l to the z-axis and
α to the plane z = 0. The resulting conoid can be parameterized as

r(u, v) = (u cos v, u sin v, h(v))

for some smooth function h(v). The asymptotic curves (distinct from the rulings) are
characterized by the differential equation [54, p. 137]

u(v)2 = bh′(v)

for some constant b. The top views of the asymptotic curves must intersect the lines
through the origin under the constant angle γ, where cot2(γ/2) = |a|. We now have
to distinguish whether this angle is right one or not.

If γ is a right angle, then the top views of asymptotic curves must be concentric
circles, leading to u(v) = const and h(v) = v up to a translation and a scaling along
the z-axis. We get helicoid (7).

If γ is not a right angle, then the top views must be logarithmic spirals u(v) =
ce±v cot γ for some constant c. This yields h(v) = e±2v cot γ up to a translation and
a scaling along the z-axis. Changing the signs of v and y, if necessary, we arrive
at (8). □

5.3 Geometry of the surfaces and their characteristic
curves

Ruled CRPC surface (8) is a spiral surface (see [55]), generated by a one-
parameter group of (Euclidean and isotropic) similarities, composed of rotations
about the z-axis and central similarities with center at the origin. The paths
of that motion are cylindro-conical spirals which appear in the top view as
logarithmic spirals with polar equation r(v) = c · e2v cot γ for some constant c.
However, the asymptotic curves (different from rulings) are not such paths.
They are expressed as

c(v) = (cev cot γ cos v, cev cot γ sin v, e2v cot γ),

and are also obtained by intersecting the ruled surface with isotropic spheres
(of variable isotropic radius c2/2),

z =
1

c2
(x2 + y2). (9)

On these, the curves c(v) are isotropic loxodromes. Their tangents are contained
in a linear line complex with the z-axis as the axis. This is related to another
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non-Euclidean interpretation of isotropic CRPC ruled surface (8) and its
asymptotic curves c(v): One can view one of the paraboloids (9) as absolute
quadric of the projective model of hyperbolic 3-space. There, (8) is a helicoid
and the asymptotic curves c(v) are paths of a hyperbolic helical motion (one-
parameter subgroup of the group of hyperbolic congruence transformations). It
is also well known and easy to see that the hyperbolic helices are projectively
equivalent to Euclidean spherical loxodromes [56].

In summary, we have proved the following result.

Proposition 21. The asymptotic curves of spiral ruled surfaces (8), distinct
from the rulings, lie on isotropic spheres. Viewing one of these isotropic spheres
as the absolute quadric of the projective model of hyperbolic geometry, these
surfaces are helicoids and the asymptotic curves are helical paths. The latter
are projectively equivalent to Euclidean spherical loxodromes.

6 Helical surfaces

A helical motion through the angle ϕ about the z-axis with pitch h is the
composition of the rotation through the angle ϕ about the z-axis and the
translation by hϕ in the z-direction. The helical motion is also an isotropic
congruence. A surface invariant under the helical motions for fixed h and all ϕ
is called helical with pitch h. In particular, for h = 0 we get a rotational surface.

Theorem 22. (See Fig. 5) An admissible helical surface with nonzero pitch
has a constant ratio a ̸= 0 of isotropic principal curvatures, if and only if it is
isotropic similar to a subset of one of the surfaces

ra(u, v) =

 cos v (cosu sina u)
− 1

a+1

sin v (cosu sina u)
− 1

a+1

v + u+ 1
a2−1 tanu+ a2

a2−1 cotu

 , if a ̸= ±1, (10)

rc(u, v) =

 u cos v
u sin v

c log u+ v

 , if a = −1, (11)

where c is an arbitrary constant and v runs through R. In (11), u runs through
(0,+∞). In (10), u runs through a subinterval of (0, π/2), where tan2 u ̸= a.

Proof Since the pitch is nonzero, it can be set to 1 by appropriate scaling along the
z-axis. Take the section of the surface by a half-plane bounded by the z-axis. Since
the surface is admissible, the section is a disjoint union of smooth curves without
vertical tangents. Then one of those curves can be parameterized as z = f(

√
x2 + y2)

for some smooth function f(u) defined in an interval inside the ray u > 0. Hence, up
to rotation about the z-axis, our surface can be parameterized as

r(u, v) = (u cos v, u sin v, f(u) + v). (12)
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Fig. 5: Helical isotropic CRPC surfaces (from the left to the right): surface (10)
for a > 0; its outer part; its inner part; surface (10) for a < 0; surface (11). The
singular curve tan2(u) = a of the leftmost surface is depicted in red; it splits
the surface into the parts tan2(u) > a and tan2(u) < a shown separately.

Then the isotropic Gaussian and mean curvatures are (see [57, Eq. (4.4)])

K =
u3f ′′(u)f ′(u)− 1

u4
, H =

f ′(u) + uf ′′(u)
2u

. (13)

Then the equation H2/K = (a+ 1)2/(4a) is equivalent to

au2(f ′(u) + uf ′′(u))2 = (a+ 1)2(u3f ′′(u)f ′(u)− 1). (14)

First let us solve the equation for a = −1. In this case, f ′′(u)u+ f ′(u) = 0. Hence
f(u) = c log u+ c1 for some constants c and c1. By performing the isotropic similarity
z 7→ z − c1 we bring our surface to form (11).

Assume further that a ̸= −1. Then (14) is equivalent to (see [49, Section 1.1]) (a− 1)
(
u2f ′′(u) + uf ′(u)

)
2(a+ 1)

2

−
(
uf ′(u)− u2f ′′(u)

2

)2

= 1. (15)

Thus the first fraction here vanishes nowhere (in particular, a ̸= 1). We may assume
that it is positive, otherwise change the sign of f and v in (12), leading to just a
rotation of the surface through the angle π about the x-axis. Then the first fraction
in (15) can be set to csc(2s(u)) and the second one can be set to cot(2s(u)) for some
smooth function s(u) with the values in (0, π/2). Therefore by direct calculations
(see [49, Section 1.2])

f ′(u) =
a cot s(u) + tan s(u)

(a− 1)u
, (16)

f ′′(u) =
a tan s(u) + cot s(u)

(a− 1)u2
. (17)

Taking the derivative of (16) with respect to u and combining it with (17) we obtain

s′(u)(tan s(u)− a cot s(u))

(a+ 1)
=

1

u
(18)

(see [49, Section 1.3]). In particular, s′(u) ̸= 0 everywhere, hence s(u) has an inverse
function u(s). Integrating both sides of (18) and using that s(u) assumes values in

(0, π/2), we get u(s) = c2 (cos s sin
a s)−

1
a+1 for some constant c2 ̸= 0.

Denote f(s) := f(u(s)). By the chain rule, (16), and (18) we get

f ′(s) =
f ′(u)
s′(u)

∣∣∣∣
u=u(s)

=
(tan s+ a cot s)(tan s− a cot s)

(a− 1)(a+ 1)
. (19)
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Integrating both sides of (19), we get

f(s) = s+ cot 2s+
a2 + 1

a2 − 1
csc 2s+ c3 = s+

1

a2 − 1
tan s+

a2

a2 − 1
cot s+ c3

for some constant c3 [49, Section 1.4]. The isotropic similarity (x, y, z) 7→
(x/c2, y/c2, z − c3) brings our surface to form (10) (up to renaming the parameter s
to u). □

Family (11) is a family of helical isotropic minimal surfaces joining heli-
coid (7) and logarithmoid (3) (after appropriate scaling of the z-coordinate). It
can be alternatively described as the family of the graphs of the harmonic func-
tions z = Re(C log(x+ iy)) with varying complex parameter C (again, up to
isotropic similarity). It is the associated family of the helicoid in isotropic geom-
etry [47, Sections 4.1 and 4.3(a)]; thus surfaces (11) can be called “isotropic
helicatenoids”. Just like their Euclidean analogs, they are isometric to each
other for different c, after scaling of the z-coordinate by 1/

√
1 + c2. Notice that

in isotropic geometry, the most natural notion of isometry requires preservation
of both the metric and the isotropic Gaussian curvature [58]. This is indeed
the case here by (13).

7 Translational surfaces

Now we present the main result of the paper. If α(u) and β(v) are two curves
in R3, then the surface r(u, v) = α(u) + β(v) is called the translational surface
formed by α(u) and β(v).

Theorem 23. (Fig. 6) An admissible translational surface formed by a planar
curve α and another curve β has a constant ratio a ̸= 0 of isotropic principal
curvatures, if and only if it is isotropic similar to a subset of one of the surfaces

ra(u, v) =

 u
v

v2 + au2

 , (20)

rb(u, v) =

 v + b cos v
b sin v + (b2 − 1) log |b− sin v|+ (1− b2)u

expu

 , if a ̸= 1, (21)

r(u, v) =

 u+ v
log |cosu| − log |cos v|

u

 , if a = −1, (22)

where we denote b := (a+ 1)/(a− 1). In particular, β must be a planar curve
as well. In (20), the variables u, v run through R. In (21), u runs through R
and v runs through an interval where sin v ̸= b (for a < 0) and b sin v ̸= 1 (for
a > 0). In (22), (u, v) runs through a subdomain of (−π/2, π/2)2 \ {u+ v = 0}.

Surfaces (20)–(22) for a = −1 can be viewed as the three isotropic Scherk
minimal surfaces [42, 47].
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Fig. 6: Translational isotropic CRPC surfaces (from the left to the right):
surface (20) for a > 0; surface (21) for a > 0 and a < 0; surface (22). The
red curves of surface (21) are the singular curves b sin(v) = 1. The red line of
(22) is the line u+ v = 0 where the surface has isotropic tangent planes. The
transparent plane is the asymptotic plane of surface (21) with a < 0 obtained
in the limit v → arcsin b.

The theorem follows from Lemmas 24–28, where the following 5 cases are
considered:

1. α and β are isotropic planar;
2. α is isotropic planar and β is non-isotropic planar;
3. α and β are non-isotropic planar;
4. α is isotropic planar and β is non-planar;
5. α is non-isotropic planar and β is non-planar.

In our arguments, we use the expressions for K and H obtained by combining
[7, Eq. (4,8), (4,11), (4,18), (5,1)]. (The convention for the sign of H in [7] is

different from ours but this does not affect the equation H2/K = (a+1)2

4a of
CRPC surfaces.)

Lemma 24. Under the assumptions of Theorem 23, if α and β are contained
in isotropic planes, then the surface is isotropic similar to a subset of (20).

Proof Performing a rotation about a vertical axis, we can take the planes of α and β
to the planes y = kx and x = 0 for some k ∈ R. Since the surface is admissible,
α and β cannot have vertical tangents. Thus the curves can be parameterized as
α(u) = (u, ku, f(u)) and β(v) = (0, v, g(v)) for some functions f(u) and g(v) defined
on some intervals. Then our surface is

r(u, v) = (u, ku+ v, f(u) + g(v)). (23)

Then the isotropic Gaussian and mean curvatures are (see [7, Sections 4–5] and [59,
Eq. (3.2)])

K = f ′′(u)g′′(v), H =
(k2 + 1) g′′(v) + f ′′(u)

2
. (24)

Since K ̸= 0, it follows that f ′′(u)g′′(v) ̸= 0 for all (u, v) from the domain. Then the
equation H2/K = (a+ 1)2/(4a) is equivalent to the following differential equation:(

k2 + 1 +
f ′′(u)
g′′(v)

)2

=
(a+ 1)2

a

f ′′(u)
g′′(v)

. (25)
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By (25) we get f ′′(u)/g′′(v) = const. Then f ′′(u) = const and g′′(v) = const. Thus
f(u) + g(v) is a polynomial of degree 2. By Example 1, our surface is isotropic similar
to a subset of (20). □

One can see the same geometrically. The directions of the two parametric
curves u = const and v = const through each point of a translational surface
are conjugate (by the property mentioned in Section 2). The top view of the
parametric curves consists of two families of parallel lines. Therefore the top
view of the two conjugate directions is the same everywhere. But a pair of
conjugate directions and the ratio a ̸= 1 of isotropic principal curvatures are
enough to determine the two isotropic principal directions up to symmetry.
By continuity, the top views of the isotropic principal directions are the same
everywhere. Consider one parametric curve v = const and a pair of parametric
curves u = const. These three parametric curves intersect at two points. The
parametric curves u = const are translations of each other along the parametric
curve v = const. Hence the isotropic normal curvature of the former two
parametric curves is the same at these two points. Since the ratio of isotropic
principle curvatures is constant, by the (isotropic) Euler formula (see [7, Eq.
(4,28)]) it follows that the isotropic principle curvatures are also the same. Thus,
again by the Euler formula, the isotropic normal curvature of the parametric
curve v = const is the same everywhere. Thus the latter parametric curve,
hence α(u), is a parabolic isotropic circle. Analogously, β(v) is a parabolic
isotropic circle, and our surface is a paraboloid.

Lemma 25. Under the assumptions of Theorem 23, if α and β are contained in
an isotropic and a non-isotropic plane respectively, then the surface is isotropic
similar to a subset of (21).

Proof Performing an isotropic similarity of the form z 7→ z+ px+ qy we can take the
plane of β to the plane z = 0. After that, performing a rotation about a vertical axis,
we can take the plane of α to the plane x = 0. Since the surface is admissible, α cannot
have vertical tangents. Thus it can be parameterized as α(u) = (0,−u, f(u)) for some
function f(u). Since the surface r(u, v) = α(u) + β(v) is admissible, β cannot have
tangents parallel to the y-axis. Thus it can be parameterized as β(v) = (v, g(v), 0)
for some function g(v). Then the surface is

r(u, v) = (v,−u+ g(v), f(u)). (26)

Hence the isotropic Gaussian and mean curvatures are (see [7, Sections 4–5])

K = f ′(u)f ′′(u)g′′(v), H =
f ′(u)g′′(v) +

(
1 + g′(v)2

)
f ′′(u)

2
. (27)

Since K ̸= 0, it follows that f ′(u)f ′′(u)g′′(v) ̸= 0. Therefore the equation H2/K =
(a+ 1)2/(4a) is equivalent to(

(1 + g′(v)2)
f ′′(u)
f ′(u)

+ g′′(v)

)2

=
(a+ 1)2

a

f ′′(u)
f ′(u)

g′′(v). (28)
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By (28) we get f ′′(u)/f ′(u) = const. Hence f(u) = peλu+q for some constants p, q, λ,

where p, λ ̸= 0. Substituting λ for
f ′′(u)
f ′(u)

in (28), we get (see [49, Section 2.1])

g′′(v) =
λ

4a

(
a+ 1±

√
(a− 1)2 − 4ag′(v)2

)2

. (29)

To solve the resulting ODE, introduce the new variable p = g′(v). Since g′′(v) ̸= 0,
it follows that the function g′(v) has a smooth inverse v(p) and there is a well-
defined composition g(p) := g(v(p)). Substituting g′(v) = p into (29) and using

g′′(v) = dp
dv = 1/dv

dp = p/dg
dp for p ̸= 0, we obtain

λ
dg

dp
=

4ap(
a+ 1±

√
(a− 1)2 − 4ap2

)2 , (30)

λ
dv

dp
=

4a(
a+ 1±

√
(a− 1)2 − 4ap2

)2 . (31)

Clearly, a ̸= 1. Integrating, we obtain (see [49, Section 2.2])

λg(p) = − log

∣∣∣∣a+ 1±
√

(a− 1)2 − 4ap2
∣∣∣∣− a+ 1

a+ 1±
√

(a− 1)2 − 4ap2
+ C1, (32)

λv(p) =
(a− 1)2

4a

[
arctan p∓ arctan

(
(a+ 1)p√

(a− 1)2 − 4ap2

)]
+

+
(a+ 1)p

a+ 1±
√

(a− 1)2 − 4ap2
+ C2 (33)

for some constants C1, C2. Denote by w the expression in square brackets in (33)
plus ±sgn (a− 1) · π/2. Passing to the new variable w and using the notation b :=
(a+ 1)/(a− 1), we get (see [49, Section 2.3])

λg(w) =
(b2 − 1) log|b− sinw|+ b sinw + C′

1

(b2 − 1)
, (34)

λv(w) =
w + b cosw + C′

2

(b2 − 1)
(35)

for some other constants C′
1 and C′

2. Performing the isotropic similarity

(x, y, z) 7→
(
λ(b2 − 1)x− C′

1, λ(b
2 − 1)y − C′

2,
z − q

p

)
and renaming the parameters u and w to u/λ and v, we bring (26) to form (21). □

Lemma 26. Under the assumptions of Theorem 23, if α and β are contained
in non-isotropic planes, then the surface is isotropic similar to a subset of (22).

Proof Similarly to the previous lemma, performing an isotropic similarity of the
form z 7→ px + qy + rz and a rotation about a vertical axis we take the planes of
α and β to the planes z = x and z = 0 respectively. The tangent to α cannot be
perpendicular to the x-axis at each point, because otherwise α is a straight line and
a = 0, contradicting to the assumptions of the theorem. Thus α′(u) ̸⊥ Ox at some
point u. By continuity, the same is true in an interval around u. In what follows
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switch to an inclusion-maximal interval (u1, u2) with this property. Notice that then
each endpoint uk is either an endpoint of the domain of α(u) or there exist finite

lim
u→uk

α(u) and lim
u→uk

α′(u)/|α′(u)| ⊥ Ox.

On the interval (u1, u2), the curve α can be parameterized as α(u) = (u, f(u), u) for
some smooth function f(u). Analogously, on a suitable interval (v1, v2) the curve β
can be parameterized as β(v) = (v, g(v), 0) for some smooth g(v). Therefore a part of
our surface can be parameterized as

r(u, v) = (u+ v, f(u) + g(v), u). (36)

Thus the isotropic Gaussian and mean curvatures are (see [7, Sections 4–5] and [43,
Eq. (6.3), (6.8)])

K =
f ′′(u)g′′(v)

(f ′(u)− g′(v))4
, H =

(1 + f ′(u)2)g′′(v) + (1 + g′(v)2)f ′′(u)

2|f ′(u)− g′(v)|3
. (37)

Here f ′′(u)g′′(v) ̸= 0 and f ′(u) − g′(v) ̸= 0 because K ≠ 0 and the surface is
admissible. Hence the equation H2/K = (a+ 1)2/(4a) is equivalent to(

(1 + f ′(u)2)g′′(v) + (1 + g′(v)2)f ′′(u)
)2

=
(a+ 1)2

a
f ′′(u)g′′(v)(f ′(u)− g′(v))2.

(38)
First let us solve the equation in the case when a = −1 (this was done in [41, 42]).

In this case,
f ′′(u)/(1 + f ′(u)2) = −g′′(v)/(1 + g′(v)2) = c

for some constant c ̸= 0. Hence

f(u) =
1

c
log|cos(cu+ c1)|+ c2 and g(v) = −1

c
log|cos(cv + c3)|+ c4

for some constants c1, c2, c3, and c4. Changing the parameters (u, v) to (u−c1, v−c3)/c
and performing the isotropic similarity (x, y, z) 7→ (cx+ c1+ c3, c(y− c2− c4), cz+ c1)
we bring (36) to form (22). Notice that there are no points u1, u2 ∈ R with finite
limu→uk f(u) and limu→uk 1/

√
2 + f ′(u)2 = 0; hence the above maximal intervals

(u1, u2) and (v1, v2) coincide with the domains of α(u) and β(v), and (36) actually
coincides with the whole given surface.

Now let us prove that for a ̸= −1 equation (38) has no solutions with f ′′(u)g′′(v) ̸=
0. The equation is equivalent to

(1+f ′(u)2)g′′(v)+(1+g′(v)2)f ′′(u)± (a+1)

√
f ′′(u)g′′(v)

a
(f ′(u)−g′(v)) = 0. (39)

We may assume that here we have a plus sign and g′′(v) > 0, otherwise replace
(f(u), g(v)) by sgn (g′′(v))(f(±u), g(±v)).

If a = 1 then (39) is equivalent to(√
f ′′(u)/g′′(v) + f ′(u)

)2
+
(
g′(v)

√
f ′′(u)/g′′(v)− 1

)2
= 0.

Hence f ′(u) = −1/g′(v) is constant. Therefore f ′′(u) = 0, a contradiction.
Assume further a ̸= ±1. For fixed v, a solution f(u) of (39) gives a regular curve

in the plane with the coordinates

(X,Y ) :=
(√

f ′′(u)/a, f ′(u)
)
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because f ′′(u) ̸= 0. By (39), the curve is contained in the conic

a(1 + g′(v)2)X2 + (a+ 1)
√

g′′(v)XY+g′′(v)Y 2 − (a+ 1)
√

g′′(v)g′(v)X + g′′(v) = 0.

(40)

The conic is irreducible because the determinant of its matrix is

−(a− 1)2(g′(v)2 + 1)g′′(v)2/4 ̸= 0

for a ̸= 1 (see [49, Section 2.4]). Since such irreducible conics (40) for distinct v have
a common curve, they actually do not depend on v. Thus the ratio of the coefficients
at X and XY is constant. Since a ̸= −1, it follows that g′(v) = const and g′′(v) = 0,
a contradiction. Therefore there are no solutions for a ̸= −1. □

Lemma 27. There are no admissible translational surfaces with constant
nonzero ratio of isotropic principal curvatures formed by an isotropic planar
curve α and a nonplanar curve β.

Proof Assume the converse. Performing a rotation about a vertical axis, we can take
the plane of α to the plane x = 0. Since the surface is admissible, α cannot have
vertical tangents. Thus it can be parameterized as α(u) = (0, u, f(u)) for some function
f(u). Since the surface r(u, v) = α(u) + β(v) is admissible, β cannot have tangents
perpendicular to the x-axis. Thus it can be parameterized as β(v) = (v, g(v), h(v))
for some functions g(v) and h(v). Then the surface is

r(u, v) = (v, u+ g(v), f(u) + h(v)). (41)

Therefore the isotropic Gaussian and mean curvatures are (see [7, Sections 4–5])

K = −f ′′(u)(f ′(u)g′′(v)− h′′(v)), (42)

H =
f ′(u)g′′(v)− h′′(v)− (1 + g′(v)2)f ′′(u)

2
. (43)

Here f ′′(u) ̸= 0 because K ̸= 0. Thus the equation H2/K = (a+1)2/(4a) is equivalent
to (

1 + g′(v)2 +
h′′(v)− f ′(u)g′′(v)

f ′′(u)

)2

=
(a+ 1)2

a

(h′′(v)− f ′(u)g′′(v))
f ′′(u)

. (44)

Here the right side (without the factor (a + 1)2/a) does not depend on u because
equation (44) is quadratic in it with the coefficients not depending on u. Differentiating
the right side with respect to u, we get (see [49, Section 2.5])

g′′(v)(f ′′′(u)f ′(u)− f ′′(u)2)− h′′(v)f ′′′(u)

f ′′(u)2
= 0. (45)

If there exists u such that f ′′′(u) ̸= 0, then h′′(v) = const · g′′(v), otherwise g′′(v) = 0
identically. In both cases g′′′(v)h′′(v) − h′′′(v)g′′(v) = 0 identically. Hence β is a
planar curve, a contradiction. □

Lemma 28. There are no admissible translational surfaces with constant
nonzero ratio of isotropic principal curvatures formed by a non-isotropic planar
curve α and a nonplanar curve β.
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Proof Assume the converse. Performing an isotropic similarity of the form z 7→
px+ qy+ z we can take the plane of α to the plane z = 0. Performing an appropriate
rotation with a vertical axis and restricting to sufficiently small parts of our curves,
we may assume that the tangents to α and β are not perpendicular to the x-axis
at each point. Then the curves can be parameterized as α(u) = (u, f(u), 0) and
β(v) = (v, g(v), h(v)) for some smooth functions f(u), g(v), and h(v). Therefore a
part of our surface can be parameterized as

r(u, v) = (u+ v, f(u) + g(v), h(v)). (46)

Thus the isotropic Gaussian and mean curvatures are (see [7, Sections 4–5] and [43,
Eq. (6.3), (6.8)])

K =
f ′′(u)h′(v)

(
g′′(v)h′(v)− h′′(v)(g′(v)− f ′(u))

)
(f ′(u)− g′(v))4

, (47)

H = −
(1 + g′(v)2)f ′′(u)h′(v) + (1 + f ′(u)2)

(
g′′(v)h′(v)− h′′(v)(g′(v)− f ′(u))

)
2|f ′(u)− g′(v)|3

.

(48)
Here f ′′(u), h′(v), f ′(u) − g′(v) ̸= 0 because K ≠ 0. Hence the equation H2/K =
(a+ 1)2/(4a) is equivalent to

a

(
(g′(v)2 + 1)f ′′(u) + (f ′(u)2 + 1)

(
g′′(v)− h′′(v)

h′(v)
(g′(v)− f ′(u))

))2

−

−(a+ 1)2(f ′(u)− g′(v))2f ′′(u)

(
g′′(v)− h′′(v)

h′(v)
(g′(v)− f ′(u))

)
= 0. (49)

Fix a value of v. A solution f(u) of (49) gives a regular curve in the plane with
the coordinates (X,Y ) :=

(
f ′′(u), f ′(u)

)
because f ′′(u) ̸= 0. The curve is disjoint

with the line X = 0. By (49), the curve is contained in the algebraic curve

a
(
(g′(v)2 + 1)X + (Y 2 + 1)L(Y )

)2
− (a+ 1)2X(Y − g′(v))2L(Y ) = 0, (50)

where
L(Y ) := g′′(v)− h′′(v)(g′(v)− Y )/h′(v).

The expression L(Y ) is not a zero polynomial in Y , because otherwise (50) reduces
to X = 0, whereas the above regular curve is disjoint with the line X = 0.

Let us prove that the algebraic curve (50) is irreducible (where an irreducible curve
of multiplicity two is also viewed as irreducible). Indeed, otherwise the left side equals

a(g′(v)2 + 1)2(X − P1(Y ))(X − P2(Y ))

for some complex polynomials P1(Y ) and P2(Y ). Consider (50) as a quadratic equation
in X. Then its discriminant D(Y ) = a2(g′(v)2 + 1)4(P1(Y )− P2(Y ))2 is the square
of a polynomial in Y . A direct computation gives (see [49, Section 2.6])

D(Y ) = (a+ 1)2(Y − g′(v))2L(Y )2·

·
(
(a− 1)2g′(v)2 − 4a− 2(a+ 1)2g′(v)Y +

(
(a− 1)2 − 4ag′(v)2

)
Y 2
)
. (51)

Assume a ̸= −1, otherwise the left side of (50) is the square of a linear in X, hence
irreducible, polynomial. All factors of D(Y ) except the last one are complete squares
and not zero polynomials in Y . Hence the last factor, which is at most quadratic in
Y , is a square of a polynomial in Y . Hence its discriminant (see [49, Section 2.7])
16(a− 1)2a(g′(v)2+1)2 vanishes. Since a ̸= 0, we get a = 1. Then D(Y ) ≤ 0 with the



32

equality only for a finite number of real values of Y . Therefore (50) has only a finite
number of real points (X,Y ) and cannot contain a regular curve. This contradiction
proves that (50) is irreducible.

Since irreducible curves (50) for distinct v contain the same regular curve, they
must all coincide. Thus the ratio of the free term and the coefficient at Y in (50) is
constant (including the case when one of the coefficients or both vanishes). Hence
the ratio of the two coefficients of the linear polynomial L(Y ) is constant. Thus
p(h′(v)g′′(v) − h′′(v)g′(v)) − qh′′(v) = 0 for some constants p and q not vanishing
simultaneously. Therefore ((pg′(v) + q)/h′(v))′ = 0, hence pg′(v) + q = rh′(v) and
pg(v) + qv + rh(v) + s = 0 for some constants r and s. Thus the curve β(v) =
(v, g(v), h(v)) is planar, a contradiction. □

8 Dual-translational surfaces

8.1 Isotropic metric duality

The principle of duality is a crucial concept in projective geometry. For example,
in projective 3-space, points are dual to planes and vice versa, straight lines
are dual to straight lines, and inclusions are reversed by the duality.

In contrast to Euclidean geometry, isotropic geometry possesses a metric
duality. It is defined as the polarity with respect to the unit isotropic sphere,
which maps a point P = (p1, p2, p3) to the non-isotropic plane P ∗ with the
equation z = p1x+p2y−p3, and vice versa. For two points P and Q at isotropic
distance d, the dual planes P ∗ and Q∗ intersect at the isotropic angle d. The
latter is defined as the difference between the slopes of the two lines obtained
in a section of P ∗ and Q∗ by an isotropic plane orthogonal to the line P ∗ ∩Q∗.

The following properties of the metric duality are straightforward. Parallel
points, defined as points having the same top view, are dual to parallel planes.
Two non-parallel lines in a non-isotropic plane are dual to two non-parallel
lines in a non-isotropic plane. Two parallel lines in a non-isotropic plane are
dual to two non-parallel lines in an isotropic plane.

The dual Φ∗ of an admissible surface Φ is the set of points dual to the
tangent planes of Φ. If Φ is the graph of a smooth function f , then the tangent
plane at the point (x0, y0, f(x0, y0)) is

z = xfx(x0, y0) + yfy(x0, y0)− (x0fx(x0, y0) + y0fy(x0, y0)− f(x0, y0)).

Hence Φ∗ is parameterized by

x∗(x, y) = fx(x, y), y∗(x, y) = fy(x, y), z∗(x, y) = xfx + yfy − f. (52)

If Φ has parametric form (x(u, v), y(u, v), z(u, v)), then Φ∗ is parameterized by

x∗(u, v) =
yuzv − yvzu
xvyu − xuyv

, y∗(u, v) =
xuzv − xvzu
xuyv − xvyu

, z∗(u, v) = xx∗+yy∗−z.

(53)



33

It is important to note that Φ∗ may have singularities that correspond to
parabolic points of Φ, where K = 0, and doubly-tangent planes. This duality
relationship is reflected in the following expressions that relate the isotropic
curvatures of dual surfaces, as shown in [60]: H∗ = H/K and K∗ = 1/K.

Thus the dual of an isotropic CRPC surface is again an isotropic CRPC
surface because (H∗)2/K∗ = H2/K. The classes of rotational, parabolic rota-
tional, ruled, and helical CRPC surfaces are clearly invariant under the duality.
Each surface (3), (7), (8), (10), and (11) is isotropic similar to its dual. Two
surfaces (2) are isotropic similar to the duals of each other.

More properties of the metric duality can be found in [8].

8.2 Dual-translational isotropic CRPC surfaces

For the translational surfaces, the duality leads to a new type of surfaces: the
ones with a conjugate net of isotropic geodesics. A curve on a surface is an
isotropic geodesic if its top view is a straight line segment. Two families of
curves form a conjugate net if any two curves from distinct families intersect
and their directions at the intersection point are conjugate (see the definition
in Section 2).

Proposition 29. (See Fig. 7) The dual surfaces of (21) and (22) are up to
general isotropic similarity respectively

r∗b (u, v) = expu


cos v

b−sin v

1
b−b3+v cos v

(b2−1)(b−sin v) − log |b− sin v|+ u

 , (54)

r∗(u, v) =
1

tanu+ tan v

 tan v
1

log| cos vcosu | − u tanu+ v tan v

 . (55)

They have a constant ratio (equal to (b − 1)/(b + 1) and −1 respectively) of
isotropic principal curvatures and possess a conjugate net of isotropic geodesics.
The domains of maps (54) and (55) are subsets of the domains of (21) and (22),
where the maps are injective; see Theorem 23.

The proposition is proved by direct calculation with the help of (53) (see [49,
Section 4]). We still have to show that duals to translational surfaces possess
a conjugate net of isotropic geodesics. At all points of a curve u = const on
a translational surface, the tangents to the curves v = const are parallel and
form a general cylinder. Hence all tangent planes along the curve u = const are
parallel to one line. Then the duals of those planes form a section of the dual
surface by an isotropic plane, which is an isotropic geodesic. The same is true
for the tangent planes along each curve v = const. Since curves u = const and
v = const form a conjugate net on the translational surface and any projective
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Fig. 7: Duals of the translational isotropic CRPC surfaces (from the left to
the right): surfaces (54) for a > 0 and a < 0; surface (55). The red curves are
the singular curves b sin v = 1 of surface (54) with a > 0.

duality maps conjugate tangents to conjugate tangents, the metric dual to a
translational surface possesses a conjugate net of geodesics.
Remark 30. Surfaces with a conjugate net of Euclidean geodesics have been
determined by A. Voss [61]. The conjugate net of geodesics is remarkably
preserved by a one-parameter family of isometric deformations. The conjugate
nets of geodesics are reciprocal parallel to the asymptotic nets of surfaces with
constant negative Gaussian curvature. Discrete versions of Voss nets are quad
meshes with planar faces that are flexible when the faces are rigid and the
edges act as hinges. We refer the reader to R. Sauer [62]. Analogous properties
hold for the isotropic counterparts of Voss surfaces if one defines an isometric
deformation in isotropic space as one which preserves the top view and isotropic
Gauss curvature [58]. We will report on this and related topics in a separate
publication.

9 Open problems

Following the general philosophy discussed in Section 1, one can try to apply the
methods developed for the classification of helical and translational isotropic
CRPC surfaces in Sections 6–7 to their analogs in Euclidean geometry; cf. [20].
The case of translational surfaces generated by two spatial curves remains open
in both geometries.

It is natural to extend the search for CRPC surfaces to other Cayley–Klein
geometries such as Galilean or Minkowski geometry, and Cayley–Klein vector
spaces [63, 64]. The transition from Euclidean to pseudo-Euclidean (Minkowski)
geometry is not expected to lead to significant differences, but more case
distinctions. It is relative differential geometry with respect to a hyperboloid.
We may return to this topic in future research if it appears to be rewarding.
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A The singularities in the top view

For the classification of ruled CRPC surfaces (see Section 5), we need the
following two well-known lemmas from singularity theory, which we could not
find a good reference for.

Lemma 31. If Rt is an analytic family of lines in the plane, then for all t in
some interval I the lines Rt satisfy one of the following conditions

(i) they have a common point;
(ii) they are parallel;
(iii) they are tangent to one regular curve ( envelope) forming a part of the

boundary of the union
⋃

t∈I Rt.

Proof Assume without loss of generality that all Rt are not parallel to the y axis
for t in some interval I1. Let L(x, y, t) := y + a(t)x + b(t) = 0 be the equation
of the line Rt. For each n = 1, 2, . . . consider the subset Σn of R2 × I1 given by

L(x, y, t) = ∂
∂tL(x, y, t) = · · · = ∂n

∂tnL(x, y, t) = 0 but ∂n+1

∂tn+1L(x, y, t) ̸= 0, and also

the subset Σ∞ given by ∂n

∂tnL(x, y, t) = 0 for all n = 0, 1, . . . . By the analyticity, we
may restrict to a subsegment I2 ⊂ I1 such that no connected component of Σn is
contained in a plane of the form R2 × {t}. Consider the following 3 cases.

Case (i): Σ∞ ̸= ∅. Then take a point (x, y, t) ∈ Σ∞. By the analyticity L(x, y, t) =
0 for all t. Hence (x, y) is a point common to all Rt.

Case (ii): Σ∞ = Σn = ∅ for all n. Then the system L(x, y, t) = ∂
∂tL(x, y, t) = 0

has no solutions, i.e., a′(t) = 0 and b′(t) ̸= 0 everywhere. Hence a(t) = const, b(t) is
monotone, and all Rt are parallel.

Case (iii): Σn ̸= ∅ for some n. Then take a point (x, y, t) ∈ Σn and consider the

map G(x, y, t) :=
(
L(x, y, t), ∂n

∂tnL(x, y, t)
)
; this generalizes the argument from [50,

Section 5.21], where n = 1. Let us show that the top view (projection to the xy-
plane along the t-axis) of G−1(0, 0) is the required curve (envelope). Since ∂L

∂t = 0,
∂n+1L
∂tn+1 ̸= 0, and ∂L

∂y ̸= 0, it follows that the differential dG is surjective. Then by

the Implicit Function Theorem, the intersection of G−1(0, 0) with a neighborhood of
(x, y, t) is a regular analytic curve with the tangential direction (dx, dy, dt) given by

∂L
∂t dt+

∂L
∂x dx+ ∂L

∂y dy = ∂n+1L
∂tn+1 dt+ ∂n+1L

∂tn∂x dx+ ∂n+1L
∂tn∂y dy = 0;

cf. [50, Proof of Proposition 5.25]. Since ∂L
∂t = 0 and ∂n+1L

∂tn+1 ̸= 0, it follows that the
top view of the curve is a regular analytic curve tangent to Lt. Since no component
of Σn is contained in the plane R2 × {t}, it follows that the top view is tangent to Lt

for each t in a sufficiently small interval I3 ⊂ I2.
The resulting envelope cannot be a straight line, otherwise, we have case (i). Then

it has a non-inflection point. Then for a sufficiently small I ⊂ I3, a part of the curve
is contained in the boundary of the union

⋃
t∈I Rt. □

Lemma 32. Assume that an analytic curve in R3 has a vertical tangent at a
point O and does not coincide with the tangent. Then the limit of the top view
of the tangent at a point P tending to O coincides with the top view of the limit
of the osculating plane at a point P tending to O. In particular, both limits exist.
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Proof Let r(t) be the arclength parametrization of the curve with r(0) = O. Since the
curve is not a vertical line, r′(t) ̸= const. Hence by the analyticity r′(t) = r′(0)+tna(t)
for some integer n ≥ 1 and a real analytic vector-function a(t) such that a(0) ̸= 0.
Since |r′(t)| = const, it follows that a(0) ⊥ r′(0), i.e. a(0) is horizontal.

The top view of the tangent at P = r(t), where t ≠ 0 is small enough, is parallel
to the top view of a(t) because r′(0) is vertical. Hence the limit of the former is
parallel to a(0).

The osculating plane at P = r(t), where t ̸= 0 is small enough, is parallel to
the linear span of r′(t) = r′(0) + tna(t) and r′′(t)/tn−1 = na(t) + ta′(t). As t → 0,
the latter tends to the span of r′(0) and na(0), with the top view again parallel to
a(0). □

An exciting study of simply isotropic minimal surfaces containing isotropic
lines can be found in the recent work by Akamine and Fujino [65], which may
provide additional insights related to the concepts discussed above.
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