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Abstract

Motivated by applications in freeform architecture, we study surfaces which
are composed of smoothly joined bilinear patches. These surfaces turn out to be
discrete versions of negatively curved affine minimal surfaces and share many
properties with their classical smooth counterparts. We present computational
design approaches and study special cases which should be interesting for the
architectural application.
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1. Introduction

Freeform structures constitute one of the major trends in contemporary ar-
chitecture. While we have plenty of ways to handle the pure digital shape
modeling tasks, the realization of a complex shape at the large architectural
scale is still a challenge. A significant number of problems to be solved are
rooted in Geometric Design: Ideally, architects should use systems which gen-
erate only those shapes that can be efficiently built with the chosen material
and fabrication technology. Such an approach to digital design may be called
fabrication-aware design. The present paper attempts to make a contribution in
this direction. It also continues along the lines of recent research which re-
vealed a close connection between the design and construction of architectural
freeform structures and discrete differential geometry. It turned out that practi-
cal requirements make certain discrete surface representations, such as meshes
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with planar faces and offset properties, very attractive for architectural applica-
tions. In fact, the architectural application led to the formulation of some new
concepts in discrete differential geometry [2, 3].

Some architects aim at architectural structures which exhibit smooth freeform
skins. However, smooth architectural freeform hulls are a big challenge. Since
they have to be composed of panels and the production of the panels needs to
be feasible, one has to compose smooth surfaces from simple types of surface
patches (panels). If one aims at smoothness, planar panels are not suitable.
One can replace planar panels with developable panels, in particular cylindri-
cal and conical ones. This led to the introduction of developable strip models.
They may be viewed as semi-discrete structures and provide a link between
the smooth and fully discrete setting [17]. However, while being smooth along
strips, the arising structures still exhibit kinks between adjacent strips. Panel-
ing freeform surfaces with an algorithm that allows one to control the trade-off
between smoothness and construction cost has been addressed by Eigensatz
et al. [8]. None of these methods will be able to generate a general smooth
freeform surface.

In this paper, we pursue a different direction: Prescribing a simple type of
panels, namely bilinear patches, we ask for those surfaces which can be generated
by smoothly joining these bilinear patches. Bilinear patches are parts of hyper-
bolic paraboloids and have been widely used in architecture, where they are
called hypar shells. The actual construction exploits their geometric properties:
They contain two families of straight lines and are also translational surfaces.
To the best of our knowledge, there is no built structure so far where bilinear
patches have been joined in a nontrivial way to obtain a smooth surface.

It is clear that smoothly joined negatively curved patches will only generate
models of negatively curved surfaces. The shape limitation is even stronger.
We will show here that smooth surfaces from bilinear patches are discrete affine
minimal surfaces with indefinite metric. They agree with the surfaces of Craizer
et al. [6] who did not point to the fact that their quad meshes, when filled by
patches of hyperbolic paraboloids, do in fact generate smooth surfaces. We
will complement the work of Craizer et al. by a different approach, a study of
important special cases and their relations to the classical geometric literature,
and in particular by proposing methods for computational design of these
surfaces.

1.1. Previous work
Negatively curved smooth surfaces from ruled surface strips, but not bilin-

ear patches, have already been addressed by S. Flöry et al. [9, 10, 11]. This
work can be seen as contribution to the computation of semidiscrete asymp-
totic parameterizations; for a mathematical study of this topic, we refer to work
by J. Wallner [26]. A rather surprising result has been achieved by E. Huhnen-
Venedey and T. Rörig [12]: They showed that discrete asymptotic parameteriza-
tions, namely quad meshes with planar vertex stars (A-nets) can be extended to
smooth surfaces via rational bilinear patches (under a certain condition on the
way the quad strips in the mesh are twisted). Thus, they showed that rational
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bilinear patches (general ruled quadrics) can be joined to smooth surfaces. This
work has not yet been fully exploited for architectural design, and it is not easy
to directly extract our special case of bilinear patches. From a purely theoretical
perspective, the work of Rörig and Huhnen-Venedey relates via Lie’s famous
line-sphere transformation to another result on smooth surfaces from simple
patches: A circular mesh (quad mesh all whose quads possess a circumcircle)
can be extended to a continuously differentiable surface by appropriately fill-
ing the quads with patches of Dupin cyclides [4]. The relation between circular
meshes and surfaces consisting of cyclidic patches was further extended to
circular arc structures and volume structures for architectural applications [5].

As soon as we will have established the relation to discrete affine minimal
surfaces, we will mention the key references on this topic. Due to the close
relation of our work to discrete differential geometry, we would like to point to
the monograph by Bobenko and Suris [2] which provides an excellent account
of this rapidly expanding field.

From the perspective of CAGD, our paper discusses smooth patchworks
from Bezier patches of degree (1,1), and thus it may be seen as a simple, but so
far not yet studied contribution to geometrically continuous patchworks.

1.2. Contributions and overview
The contributions of the present paper are as follows:

1. In section 2, we show that smoothly joined bilinear patches are discrete
models of negatively curved affine minimal surfaces. Based only on the
smooth joining of bilinear patches, we derive a construction of discrete
affine minimal surfaces from discrete translational surfaces. This con-
struction features a correspondence between quads which is similar to
the discrete Christoffel duality used for the generation of discrete Eu-
clidean minimal surfaces (see e.g. [2]).

2. Section 3 employs these findings for the design of smooth surfaces from
bilinear patches and provides tools for exploring the possible shapes.

3. Hyperbolic paraboloids possess excellent structural properties when their
axis is vertical. Thus, in section 4, we study the case where all bilinear
patches have a vertical axis. The corresponding surfaces are discrete coun-
terparts to improper affine spheres. Viewing the constant axis direction as
isotropic direction in isotropic 3-space, the surfaces possess constant rela-
tive curvature (the isotropic counterpart to Gaussian curvature) and they
can be kinematically generated as translational surfaces via so-called Clif-
ford translation. This generalizes results by K. Strubecker [25] on smooth
surfaces of constant relative curvature to the discrete setting.

2. Joining bilinear patches smoothly

We are interested in designing a quad mesh with regular topology and
vertices fi j, i = 1, . . . ,M, j = 1, . . . ,N, so that the bilinear patches Pi j determined
by each quad fi j, fi+1, j, fi+1, j+1, fi, j+1 join smoothly. We will denote the edges
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fi jfi+1, j of the mesh rows by e1
i j and the column edges fi jfi, j+1 by e2

i j. Note that a
bilinear patch (hyperbolic paraboloid) Pi j carries two families of straight lines,
which we call the e1-regulus (containing e1

i j, e
1
i, j+1) and the e2-regulus (containing

e2
i j, e

2
i+1, j). The lines in each regulus are parallel to a plane (directing plane) E1

i j

and E2
i j, respectively. The direction which is parallel to both directing planes

is the axis direction ai j of the paraboloid; it is parallel to the vector fi j − fi+1, j +
fi+1, j+1 − fi, j+1.

Clearly, smoothness requires that the edges through each vertex are copla-
nar, i.e., the mesh is a so-called asymptotic mesh or A-net [2], a discrete coun-
terpart to the network of asymptotic curves on a smooth negatively curved
surface. Our considerations will be based on the following elementary fact:

Lemma 1. Two bilinear patches Pi, j and Pi+1, j join smoothly along a common edge
e2

i+1, j = fi+1, jfi+1, j+1 if and only if

1. the edges at the common vertices fi+1, j and fi+1, j+1 are co-planar and
2. the three edges e2

i, j, e
2
i+1, j, e

2
i+2, j are parallel to a plane.

The latter property implies that the reguli determined by the common edge have a
common directing plane.

Proof. For the two bilinear patches to join smoothly means that along their
common edge their respective tangential planes coincide, which are spanned
by the patches’ rulings. If we let

f (λ, µ) := det
(
λe1

i j + µe1
i, j+1, e

2
i+1, j, λe1

i+1, j + µe1
i+1, j+1

)
then clearly the tangential planes at (1 − t)fi+1, j + tfi+1, j+1 coincide if and only
if f (1 − t, t) = 0. Expansion shows f (λ, µ) = λ2 f (1, 0) + λµC + µ2 f (0, 1), where
C ∈ R is independent of λ, µ. f (1, 0) = f (0, 1) = 0 is just the first property (A-net
condition). Thus f (λ, µ) = λµC = −λµ f (−1, 1), therefore f (1 − t, t) = 0 ∀t ⇔
f (−1, 1) = 0, which is the second property. �

Requiring smoothness of patches Pi j over the entire mesh, we see that each
row of patches Pi1,Pi2, . . . ,Pi,N−1 has a common directing plane E1

i and thus
forms a smooth conoidal ruled surface (see Fig. 1). Analogously, each column
of patches has a common directing plane E2

j . Passing to a smooth limit in an
appropriate refinement process we will obtain a surface with the following
property: Along each asymptotic curve the corresponding 2nd asymptotic
directions are parallel to a plane. This is a well known characterization of affine
minimal surfaces (see [1], p. 180).

We define a net polyline as a set of all vertices fi j where either i (row polyline)
or j (column polyline) is constant, and summarize our first findings:

Theorem 2. The only quad meshes which can be extended by bilinear patches to overall
continuously differentiable surfaces are those A-nets in which the edges that join two
neighboring net polylines are parallel to a plane. These surfaces can be seen as discrete
affine minimal surfaces with negative curvature.
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(ii) conoidal strips

Figure 1: Characterization of a quad mesh which can be extended to a smooth
surface by filling its faces with bilinear patches: (i) All vertex stars have to
be planar. (ii) The edges joining any two neighboring net polygons have to
be parallel to a plane. Therefore, on the smoothly extended surface, the strip
between two neighboring net polygons contains a continuous family of straight
line segments all of which are parallel to that plane and thus the strip defines a
conoidal ruled surface.

Our discrete affine minimal surfaces agree with the ones which Craizer et al.
[6] derived recently. There, the surfaces are found by discretizing a well-known
construction of smooth affine minimal surfaces from translational surfaces aris-
ing as co-normal fields. We will now continue the geometric considerations
based on smoothly joined patches Pi j and arrive at this construction in a purely
geometric way.

Let us first consider a single bilinear patch P := Pi j, and for simplicity call
its vertices v1 := fi j, v2 := fi, j+1, v3 := fi+1, j+1 and v4 := fi+1, j,. Each vertex has a
normal with direction vector

ni = λ(vi − vi−1) × (vi+1 − vi), (1)

where indices are taken modulo 4. Vectors ni represent the vertices of a paral-
lelogram NP, since opposite edges are parallel,

ni+1 − ni = λ(vi+1 − vi) × (vi+2 − vi−1) = ni+2 − ni−1. (2)

Moreover, (2) shows that each edge of NP is orthogonal to a pair of opposite
edges of P and thus it is orthogonal to a directing plane of P.

To get more insight into these parallelograms, we take a geometric view
(see Fig. 2). The lines λni, λ ∈ R, through the origin form the edges of a
pyramid whose face planes are orthogonal to the corresponding edges of the
quad P and whose diagonal faces are orthogonal to the non-corresponding
diagonals of P (the latter follows from the fact that the tangent planes in the
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end points of one diagonal of P intersect in the other diagonal). One can
transfer these orthogonality relations into an arbitrarily chosen plane Π as
follows: We intersect the normal pyramid with Π, resulting in a quad N∗ =
n∗1, . . . ,n

∗

4. Also, we project the quad P orthogonally onto Π, resulting in a quad
P∗ = v∗1, . . . ,v

∗

4. Then, the resulting two quads have the following property:
corresponding edges are orthogonal and non-corresponding diagonals are orthogonal.
This reminds us of Christoffel dual quads where corresponding edges and non-
corresponding diagonals are parallel (see[2], p. 48); we will therefore speak
of Christoffel orthogonal quads or briefly C-orthogonal quads. The definition of
C-orthogonality is not restricted to planar quads. Obviously, also the quad P
itself is C-orthogonal to NP.

v1v1v1v1v1v1v1v1v1v1v1v1v1v1v1v1v1v1v1v1v1v1v1v1v1v1v1v1v1v1v1v1v1

v2v2v2v2v2v2v2v2v2v2v2v2v2v2v2v2v2v2v2v2v2v2v2v2v2v2v2v2v2v2v2v2v2

v3v3v3v3v3v3v3v3v3v3v3v3v3v3v3v3v3v3v3v3v3v3v3v3v3v3v3v3v3v3v3v3v3

v4v4v4v4v4v4v4v4v4v4v4v4v4v4v4v4v4v4v4v4v4v4v4v4v4v4v4v4v4v4v4v4v4
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n2n2n2n2n2n2n2n2n2n2n2n2n2n2n2n2n2n2n2n2n2n2n2n2n2n2n2n2n2n2n2n2n2n3n3n3n3n3n3n3n3n3n3n3n3n3n3n3n3n3n3n3n3n3n3n3n3n3n3n3n3n3n3n3n3n3

n4n4n4n4n4n4n4n4n4n4n4n4n4n4n4n4n4n4n4n4n4n4n4n4n4n4n4n4n4n4n4n4n4
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ΠΠΠΠΠΠΠΠΠΠΠΠΠΠΠΠΠΠΠΠΠΠΠΠΠΠΠΠΠΠΠΠΠ

N∗N∗N∗N∗N∗N∗N∗N∗N∗N∗N∗N∗N∗N∗N∗N∗N∗N∗N∗N∗N∗N∗N∗N∗N∗N∗N∗N∗N∗N∗N∗N∗N∗

Figure 2: The normals vectors ni at the vertices vi of a bilinear patch P define
a pyramid with vertex at the origin (left). The intersection N∗ with a plane Π
and the orthogonal projection P∗ of P onto Π are Christoffel orthogonal quads:
corresponding edges and non-corresponding diagonals are orthogonal.

Let us choose the plane Π orthogonal to the axis of P (i.e., orthogonal to the
vector v1 + v3−v2−v4); this leads to two Christoffel-orthogonal parallelograms
P∗ and N∗. The edges of the projected quad P∗ are parallel to the directing
planes of P, those of N∗ are orthogonal to the directing planes. Hence, N∗ is the
parallelogram NP from above.

If we now take two adjacent quads of an affine minimal net, we can choose
the slicing planes (the value λ per bilinear patch) so that the corresponding
normal parallelograms NP share a common edge: This edge is orthogonal to
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the common directing plane of the two smoothly joined bilinear patches (cf.
Lemma 1). Proceeding with this argument we find a translational net n of normals
associated with the affine minimal net f. For completeness, we mention that
the patch dependent scaling factor λ shall be taken as reciprocal value of the
affine surface area of the corresponding bilinear patch [6], i.e.,

λ = 1/
√

det(f2 − f1, f3 − f1, f4 − f1). (3)

For our main purposes, namely the design of affine minimal nets f, we do
not need these factors, since we take the reverse direction. Starting from a
translational net n with vertices

ni j = n1
i + n2

j , (4)

we can directly compute the corresponding C-orthogonal net A from the or-
thogonality relations (also known as discrete Lelieuvre equations),

fi+1, j − fi j = ni j × ni+1, j, fi, j+1 − fi j = ni, j+1 × ni j. (5)

The system of these equations is very easily seen to be integrable: The two
ways for obtaining fi+1, j+1 from fi j (either via fi+1, j or fi, j+1), are the same,

fi+1, j+1 − fi, j = ni+1, j+1 × ni+1, j + ni j × ni+1, j = ni, j+1 × ni+1, j+1 + ni, j+1 × ni j,

which follows by insertion from (4) (see also [6]). Summarizing, we obtain the
following theorem by Craizer et al. [6], to which we have added the interpre-
tation via C-orthogonality and provided a more geometric interpretation based
on smoothly joined bilinear patches:

Theorem 3. Any smooth surface from bilinear patches (discrete affine minimal net f)
can be constructed from a translational net n (4) that is star-shaped with respect to the
origin as a Christoffel orthogonal net with help of the Lelieuvre equations (5).

The reason why we require a star-shaped translational mesh is illustrated
by Fig. 3. We point out that ni, j (defined through equations (1) and (3)) are
Euclidean normal vectors at the vertices fi j of f, but they are not unit vectors.
Sometimes called co-normals or Lelieuvre normals, they define a translational
net whose projection onto the unit sphere (centered at the origin) gives the
familiar discrete Gaussian image of f (see Fig. 7, left column).

As discussed above, the relation of C-orthogonality also holds between the
orthogonal projection of the mesh f onto a plane Π and the planar section of the
normal image in Π. The latter arises as a central projection of the translational
mesh n from the origin onto Π. We may actually rotatate that section by a right
angle in Π and obtain a pair of Christoffel dual meshes:

Corollary 4. The orthogonal projection of a discrete affine minimal net f onto any
plane Π yields a mesh whose Christoffel dual mesh may be viewed as perspective image
of the translational net n associated with f according to Theorem (3).
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Figure 3: If the translational mesh n is not star-shaped with respect to the origin,
the corresponding mesh f is singular at edges corresponding to n’s attached
shadow for illumination from the origin.

Remark 5. The bilinear patches (hyperbolic paraboloids) which form the affine
minimal net f can be seen as discrete Lie quadrics. The fact that the Lie quadrics
are all paraboloids is a characterization of affine minimal surfaces (also those
which are positively curved and not covered by our approach). The axes of the
bilinear patches are discrete affine normals; we have seen that they are also the
normals of the faces of the translational net n.

Remark 6. It is well known that any A-net can be assigned with forces acting
along edges so that the entire force system is in static equilibrium. The reciprocal
force diagram is a planar quad mesh; it is a so-called dual Koenigs net [2],
admitting infinitesimal deformations with rigid faces (R. Sauer [20] called these
nets “flächenstarr wackelige Netze”). Our A-nets A have reciprocal PQ nets A∗

all whose net polylines are planar: The edges of A∗ have the directions ê1
i j ‖ e2

i+1, j

and ê2
i j ‖ e1

i, j+1. Therefore the net polylines with edges ê1
i j, i = 1, . . . ,N, resp.

ê2
i j, j = 1, . . . ,M lie in planes parallel to E2

j , resp. E1
i (see Theorem 2 and Figure 1).

Example: Discrete affine and Euclidean minimal surfaces. For practical ap-
plications, angles between the two families of rulings should not be too close
to 0 or π. Thus, it is natural to ask whether we can get this angle close to
π/2. This would mean that our net f is a discrete version of a surface whose
asymptotic curves form an orthogonal curve network, i.e., is also a Euclidean
minimal surface.

In the smooth setting, this is a well studied subject: Affine minimal sur-
faces which are also Euclidean minimal surfaces have first been derived by
G. Thomsen. H. Schaal [21, 22] presented a simplified derivation and kine-
matic generations via Clifford translations in a certain Cayley-Klein geometry.

8



Figure 4: Generation of a smooth patchwork f of bilinear patches (right) from
a translational net n (left). Here, n is chosen such that f is not only a discrete
version of an affine minimal surface, but also of a Euclidean minimal surface.
The figure corresponds to a Thomsen surface of Type 1 (n taken from equation
(6) with α = 0.6).

Figure 5: Transforming a translational net n (left) which discretizes a rotational
paraboloid according to equation (6) yields a smooth union of bilinear patches
(right), which can be seen as a discrete version of an Enneper minimal surface.

The simplest way of performing the transfer to the present discrete setting is
to use a translational net n which discretizes the translational surfaces asso-
ciated with the smooth counterparts, which come in 2 types. For type 1, the
translational surface,

n(u, v) = (sin u, sinh v,−(cos u + sinα cosh v)/ cosα), (6)
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is generated by translating an ellipse along a branch of a hyperbola; α is a
constant, 0 < α < π/2. The surface is symmetric with respect to the planes
x = 0 and y = 0, and the ellipse and hyperbola in these symmetry planes
possess the origin as focal point. For type 2, n is a rotational paraboloid with
the origin as focal point generated by translating two parabolae along each
other,

n(u, v) = (u, v,u2 + v2
−

1
4 ). (7)

Here, the corresponding minimal surface is the well-known Enneper surface.
Discretization of these translational surfaces can be performed by evaluation

on an axis-aligned grid in the (u, v)-parameter plane. The translational nets n
and the associated A-nets f derived from them according to Theorem 3 are
shown in Figures 4 and 5, respectively.

3. Surface design and shape exploration

fffffffffffffffffffffffffffffffff
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fffffffffffffffffffffffffffffffff
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ooooooooooooooooooooooooooooooooo ooooooooooooooooooooooooooooooooo

Figure 6: Designing affine minimal nets f from translational nets n: The ap-
proximate angle by which n is bent around the vertical axis (=angle between
the green planes) is roughly the same as the angle between the top and bottom
boundary polylines of the corresponding affine minimal mesh f measured in
the horizontal plane, causing twisting of the mesh.

We begin with some tentative observations on how the shape of the trans-
lational net n influences the shape of the affine minimal net f.

If a polyline of n lies in a plane through the origin o, equation (5) shows that
the corresponding polyline on f is straight; this is the case for two boundary
polylines in the two examples of Fig. 6.

If opposite boundary polylines n11, . . . ,n1N and nM1, . . . ,nMN of the trans-
lational net n are close to parallel lines (which we may imagine as vertical),
we can measure an approximate angle between them (around the vertical axis
through o; depicted as angle between the green planes in Fig. 6).

For near vertical polylines of n the corresponding polylines of f are near
horizontal. Measuring an approximate angle of those polylines of f by using
the difference vectors between their end vertices, we find that this angle is
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roughly the same as the one at the translational net. This rotation around the
vertical axis from the bottom boundary to the top boundary polyline causes a
twisting of f (see Fig. 6).

Next let us consider the projection of n onto the unit sphere, n̄ = n/‖n‖, that
is, the discrete Gaussian image of f. As seen before, if a polyline of n lies in a
plane through o and thus the vertices of the corresponding polyline of n̄ lie on
a great circle, then the corresponding polyline of f is a straight line (polylines
14, 23, 56 and 58 in Fig. 7).

If in relation to the great circle spanned by the first and last vertex of the
polyline, the polyline is bent “outwards”, the corresponding polyline of f will
be bent inwards, towards the surface, making its surface area smaller, and vice
versa (polyline 67 resp. polylines 12, 34 and 78 in Fig. 7).
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Figure 7: If a polyline of the discrete Gaussian image of f (=translational mesh
n projected onto the unit sphere) is bent “inwards”, the corresponding polyline
of the affine minimal mesh is bent “outwards” and vice versa.

Note that the position of the origin o relative to the translational net n has
an influence on the shape of f. Hence, we should study the change of f if o gets
changed, or equivalently, n undergoes a translation. If we let n′i j := ni j + v for
some vector v ∈ R3, then the corresponding affine minimal mesh is f′ = f+v×n.
v × n is a flat mesh in the plane V with normal direction v. Using the notion
of Christoffel orthogonality illustrated in Figure 2, we can see that v × n is
Christoffel orthogonal to n projected onto the same plane V. Disregarding
scaling, we can consider f′ to be the mean of f and v × n as shown in Fig. 8.
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Figure 8: If the normal mesh n of an affine minimal mesh f is translated by
a vector v, the affine minimal mesh f′ of the resulting normal mesh n′ can be
seen as the mean of f and the planar mesh v × n (which is C-orthogonal to the
projection of n onto the same plane).

3.1. Affine minimal meshes from patch axes
The Björling problem of classical differential geometry is the task of finding

a minimal surface, given a single curve of the surface and the normals along it.
The affine version, using affine normals in place of (Euclidean) normals, was
studied e.g. by W. Blaschke [1, § 70]. Craizer et al. [7] gave a discrete equivalent
of it in the case of a definite Blaschke metric. We will now present the problem
in our setting with indefinite metric.

In the continuous case, the given curve can be any curve on the surface, but
in the discrete setting the only explicitly available curves are the net polylines
(for example (fi1)i=1,...,N), which in our case are the discrete asymptotic curves,
or diagonal polylines, e.g. (fii)i=1,...,N. Mesh polylines are not suited for the
task as the normal directions are defined by the knot positions alone, so in
combination with affine normals the problem is overdetermined. We will
therefore use diagonal polylines.

Equations (5) imply

fi+1, j+1 − fi j = ni, j+1 × ni+1, j+1 + ni, j+1 × ni j,

and therefore,
〈ni j + ni+1, j+1, fi+1, j+1 − fi j〉 = 0. (8)

The discrete affine normals are parallel to the patch axes and defined as

ai j = det(ni j,ni, j+1,ni+1, j)−1
(
fi j − fi+1, j − fi, j+1 + fi+1, j+1

)
.

They satisfy

〈ni j, ai j〉 = 〈ni+1, j, ai j〉 = 〈ni, j+1, ai j〉 = 〈ni+1, j+1,, ai j〉 = 1. (9)
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This together with (8) gives us three equations for ni+1, j+1,(
ai j, ai+1, j+1 − ai j, fi+1, j+1 − fi j

)
· ni+1, j+1 = (1, 0,−〈ni j, fi+1, j+1 − fi j〉)T, (10)

which have a unique solution provided that

det
(
ai j, ai+1, j+1 − ai j, fi+1, j+1 − fi j

)
, 0. (11)

This is the same assumption as is made in the continuous case [1, § 70, eq. (55)].

Theorem 7. Suppose nets f and a are given along the diagonal, that is, fii and aii are
known. Suppose further that the regularity condition (11) is satisfied.

Then there is a three-parameter family of affine minimal meshes f, normal meshes
n and face axes a. These affine minimal meshes can be constructed by first calculating
the normals along the diagonal nii by solving the systems of linear equations (10), then
the off-center diagonals by

ni+1,i := 1
2

(
nii + ni+1,i+1 − aii × (fi+1,i+1 − fii)

)
, (12)

and then all the others by ni j + ni+1, j+1 − ni+1, j − ni, j+1 = 0.
Finally the mesh f is constructed from the mesh n by the Lelieuvre equations (5).

Figure 9: Solutions of the discrete affine Björling problem, with the same diag-
onal curve but with different affine normal (=patch axis) lengths

Remark 8. The reason for the three free parameters is that at the first and last
diagonal knots f11 and fNN there are in total three of the equations from (10)
missing. This can be remedied by specifying one further patch axis at each end
(a00 and aNN) and one further diagonal knot (f00 or fN+1,N+1).

The construction of an affine minimal net from a diagonal polyline and
affine normals along it is illustrated in Fig. 9. It is however mostly interesting
from a theoretical perspective. It presents an elementary proof of a result of
discrete differential geometry which is a generalization of a theorem in the
smooth setting. The latter is described as a beautiful result by Blaschke [1],
along with a much less elementary proof.
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3.2. Affine minimal meshes from diagonal strips

Figure 10: Section 3.2: Affine minimal nets constructed from the same diagonal
curve. The upper left net shows the initial values of normals (dark) and patch
axes (red). The upper right net is modified from the left one by translating the
normals nii along (fi−1,i−1 − fii) × (fi+1,i+1 − fii); the initial positions of the patch
axes change subject to the normals. The lower image shows the mesh after
modifying the patch axes a by translating them along nii × ni+1,i+1, keeping the
normals fixed.

The Björling problem is not very well suited for practical mesh design, as the
relation between the affine normals and the shape of the mesh is not obvious.
Many choices of affine normals even result in meshes with singular edges —
see Fig. 3 for such a mesh.

The following algorithm is an adaption of the Björling procedure that allows
us an easier construction of affine minimal meshes from data given along the
diagonal, as it puts more emphasis on controlling the surface normals (see
Fig. 10). Assume that fii are all known.

• Find initial normal vectors along the diagonal that satisfy equation (8).
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• Design the normal directions along the diagonal by translating the nii
along (fi−1,i−1 − fii) × (fi+1,i+1 − fii). This keeps (8) valid.

• After that, initial patch axes aii are calculated by

aii :=
nii〈ni+1,i+1 − nii,ni+1,i+1〉 − ni+1,i+1〈ni+1,i+1 − nii,nii〉

‖nii‖
2‖ni+1,i+1‖

2 − 〈nii,ni+1,i+1〉
2 .

This makes sure that equation (9) holds, that is 〈aii,nii〉 = 〈aii,ni+1,i+1〉 = 1.

• Design the affine normal directions by translating them along nii×ni+1,i+1,
keeping the conditions above.

• Construct the rest of the mesh according to the Björling procedure (sec-
tion 3.1).

3.3. Affine minimal meshes from zigzag polygons
There is another method of constructing affine minimal meshes from diag-

onal data using a zigzag polygon.
Assume that f11, f12, f22, f23, . . . , fN−1,N, fNN are known. The normal directions

at these knots can easily be calculated, as there are two known edges emanating
from each knot, except for the first and last knot. There the missing second edges
can be defined for example by specifying one further knot beyond each end,
namely f01 and fN,N+1.

A knot fi+1,i lies in the knot planes of both fii and fi+1,i+1. It can be freely
chosen anywhere on those planes’ intersection line. Once one such knot is
fixed, all the others follow uniquely by imposing the properties of an affine
minimal mesh, A-net and conoidal strips, see Theorem 2.

Let us summarize these facts:

Theorem 9. Let f11, f12, f22, f23, . . . , fN−1,N, fNN be a polygon in R3 together with
normal directions at the first and last vertex n11 ⊥ f12 − f11 and nNN ⊥ fN−1,N − fNN.
Then there is a one-parameter family of affine minimal meshes f that extends the given
polygon and has the given normal directions at the corners (1, 1) and (N,N).

Remark 10. A suitable zigzag polygon can be constructed by a continuous
curve c : R→ R3 and a fixed vector v ∈ R3 as

fii := c(i) + v and fi,i+1 := c(i + 1
2 ) − v.

It is also important to note that the torsions of column and row polygons have
different signs. The given zigzag polygon has to reflect that fact. For example,
if the curve c is planar (as in Fig. 11) this means it cannot have inflection points.
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Figure 11: The construction of Theorem (9): affine minimal nets constructed
from the same zig-zag diagonal curve and end normals, but with different
choices for the free parameter.

Figure 12: 3-by-3 affine minimal meshes (left) – described by the four corner
positions and the normal directions along a diagonal – are refined (right) via
refinement of the associated translational net (not shown).
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3.4. Affine minimal meshes by refinement
Architectural designs often do not exhibit shape variations on a fine scale.

Hence it is feasible and good practice to design the shape on a coarser scale
and then compute the final shape via refinement, of course ensuring that the
constraints are also met after refinement. This approach has been successfully
demonstrated for planar quad meshes (see e.g. [13, 16]) and can also be adapted
to the current setting. We just present a simple version in order to demonstrate
the basic principle.

An affine minimal mesh with 3-by-3 vertices has 18 degrees of freedom,
which can be specified in a variety of ways. We can for example prescribe the
positions of the four corners (f11, f31, f13f33) and the directions of the normals
along a diagonal (the directions of n11, n22 and n33).

This very simple affine minimal mesh can now be refined by refining the
associated translational net n, which is an easy task: One simply refines its
generating net polylines ni1 and n1 j, by any curve refinement method (e.g.
interpolatory subdivision).

The resulting refined affine minimal surface fr will satisfy the given normal
directions but not the corner positions. If those are of higher importance, the
mesh can be affinely transformed to match the corners (as in Fig. 12), but this
will cause slight deviations in the normal directions.

Remark 11. In essence, affine minimal nets are special types of constrained
meshes. Therefore, designing, editing and exploring the shapes of affine mini-
mal nets can also be based on the constrained mesh exploration framework of
Yang et al. [28].

4. Smoothly joined bilinear patches with parallel axes

Let us now study those affine-minimal nets all whose bilinar patches possess
the same axis direction. We imagine this direction to be vertical, parallel to the
z-axis of a Cartesian system. This special case is motivated by a practical per-
spective because of the superior statics properties of hyperboloic paraboloids
with vertical axis. We aim here at some simple insights for the design of these
surfaces and at an understanding of their quite interesting geometry. The
structural analysis of the overall smooth surface is left for future work.

Let us start with some remarks on prior work and the theory. Since the
paraboloid axes are discrete affine normals, our surfaces are discrete improper
affine spheres and have been studied as such by Matsuura and Urakawa [14].
However, these authors as well as Craizer et al. [6] did not pursue our approach,
namely looking at these surfaces from the perspective of isotropic geometry.
Defining the z-direction as isotropic direction in an isotropic space, the surfaces
appear as isotropic counterparts to the discrete surfaces of constant Gaussian
curvature of Sauer [19] and Wunderlich [27]. They are discrete versions of
smooth surfaces studied already by Darboux and later by Strubecker [25], who
first realized the advantages of using isotropic geometry. We will refrain from
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a detailed study, but we want to sketch the main results and demonstrate how
easily they follow from our geometric framework.

4.1. Construction from planar translational nets

mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm

mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm

mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm
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f′

Figure 13: An affine minimal net with vertical axes of the bilinear patches is
determined by its top view f′, a translational mesh, and the heights of the four
corners.

According to Theorem 3, a smooth surface Φ which is composed of bilinear
patches can be obtained from a translational net n via a rather simple transfor-
mation (C-orthogonality). It turned out that the normals of n’s faces are parallel
to the axes of the bilinear patches which form the surface Φ. As we now require
all axes to be parallel, the faces of n need to have parallel normals and thus the
entire mesh n has to lie in a plane Π. Conversely, if we apply our construction
onto a mesh n in a plane, say Π : z = 1, the resulting A-net f has patches whose
axes are orthogonal to Π. If one projects a bilinear patch parallel to its axis into
a plane, one obtains a parallelogram. Hence, projecting the net f orthogonally
into Π, we must get a translational net f′, which we call the top view of f. Note
that f′ and n are C-orthogonal translational nets in Π.

Let us look at the design of the quad meshes f and the degrees of freedom
we have. To define the top view f′, it is sufficient to prescribe two polygons, say
f′11, . . . , f

′

1N and f′11, . . . , f
′

M1. Additionally, we may fully prescribe the bilinear
patch f11f12f21f22 at the common point. Then, by enforcing planar nodes, it is
obviously straightforward to build up the net f above the top view f′.

For practical purposes, it is better to prescribe the z-coordinates at the cor-
ners f11f1NfM1fMN of the entire mesh f, as shown in Figure 13. This can easily
be done by first constructing the mesh with an arbitrary (non-planar) choice of
f11f12f21f22 and then applying an affine transformation which maps the remain-
ing three corners to the desired locations f1NfM1fMN.
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4.2. Some basics of isotropic geometry
The geometry of the nets f becomes interesting if we employ isotropic geom-

etry, which has been systematically developed by Strubecker [25, 23, 24] in the
1940s (see also the mongraph by Sachs [18]). It is based on the following group
G6 of affine transformations (x, y, z) 7→ (x′, y′, z′) in R3,

x′ = a + x cosφ − y sinφ,
y′ = b + x sinφ + y cosφ, (13)
z′ = c + c1x + c2y + z,

called isotropic congruence transformations (i-motions). Obviously, motions in
isotropic space I3 appear as Euclidean motions in the top view.

The 5-parameter subgroup of those i-motions which appear as translations
in the top view (φ = 0) can be represented as commutative product of two
3-parameter groups of so-called Clifford translations,

x′ = a + x,
y′ = b + y, (14)
z′ = c + εbx − εay + z, ε = ±1;

one speaks of right translations for ε = 1 and left translations for ε = −1.
Many metric properties in isotropic 3-space I3 (invariants under G6) are

Euclidean invariants in the top view. For example, the i-distance of two points
x j = (x j, y j, z j), j = 1, 2, is defined as Euclidean distance of their top views x′j,

‖x1 − x2‖i :=
√

(x1 − x2)2 + (y1 − y2)2. (15)

Two points (x, y, z j) with the same top view are called parallel points; they have
i-distance zero, but they need not agree. Since the i-metric (15) degenerates
along z-parallel lines, these are called isotropic lines. Isotropic angles between
straight lines are measured as Euclidean angles in the top view.

Isotropic geometry enjoys a metric duality. It may be realized by the polarity
with respect to the isotropic unit sphere Σ : 2z = x2 + y2, which maps the point
p = (p1, p2, p3) to the plane

P : z = p1x + p2y − p3. (16)

Points p and q = (q1, q2, q3) with i-distance d (from (15)) are mapped to planes
P and Q : z = q1x + q2y − q3. The i-angle σ of the two planes P,Q, defined as
σ2 = (p1 − q1)2 + (p2 − q2)2, equals the point distance d.

Curvature theory of surfaces: A surface Φ without isotropic (z-parallel) tangent
planes can be written in explicit form, Φ : z = f (x, y). Defining an isotropic
Gauss map from Φ to the isotropic unit sphere Σ via parallel tangent planes,
one finds that the derivative of this map (isotropic Weingarten map) is described
by the Hessian ∇2 f of f . Its eigenvalues are called i-principal curvatures. The
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corresponding orthogonal directions r1, r2 are the eigenvectors of ∇2 f . With the
i-principal curvatures κ1, κ2 one defines isotropic curvature (or relative curvature)

K = κ1κ2 = det(∇2 f ) = fxx fyy − f 2
xy, (17)

and isotropic mean curvature H,

2H = κ1 + κ2 = trace(∇2 f ) = fxx + fyy = ∆ f . (18)

4.3. Viewing smoothly joined bilinear patches with parallel axes as surfaces in isotropic
space

Let us consider the constant axis direction of the bilinear patches in our
special A-nets f as isotropic direction in isotropic space. Simple properties of
these patches in isotropic geometry, along with the fact that they are smoothly
joined, will allow us to derive remarkable geometric properties of the nets f.
These appear as discrete counterparts to known results in the smooth case.

A bilinear patch f1, . . . , f4 whose top view is a parallelegram may be called a
skew parallelogram (isogram) in isotropic geometry. Opposite edges have the
same isotropic length, say s1 and s2, respectively. The tangent planes at the end
points of opposite edges form the same isotropic angle (due to the isotropic
axial symmetry of the patch with respect to the istropic line which joins the
centers of the patch digonals). Let σi, i = 1, 2, be the isotropic angle formed by
the tangent planes at the end points of an edge of length si. A simple elementary
calculation then shows that

σ1 : s1 = −σ2 : s2 =: τ. (19)

Since neighboring patches share tangent planes, the ratio σi : si is constant along
each row or column polygon in the net; it is τ for one family and −τ for the
other. Obviously, the ratio σi : si is a suitable definition of discrete isotropic torsion
of a polygon, and thus we can state that the A-nets under consideration possess
two families of discrete asymptotic curves with constant isotropic torsion ±τ. Clearly
the nets are isotropic Chebyshev nets and, for example with arguments as given
by Wunderlich [27] in the Euclidean case, one finds that the nets are discrete
counterparts of surfaces with constant isotropic relative curvature K = −τ2 = const.

To see that the A-nets are also Clifford translational surfaces, we just need
to have a look at a single patch Pi j. It is a Clifford surface in isotropic geometry
and hence, there is a Clifford translation which maps two opposite boundaries
onto each other, say (fi j, fi, j+1) 7→ (fi+1, j, fi+1, j+1). It can be extended to a one-
parameter group which maps the entire surface defined by the patch in itself.
As an isotropic motion, it keeps isotropic angles and distances. Thus, it also
maps the patch Pi, j+1 which joins Pi, j smoothly along the edge (fi, j+1, fi+1, j+1)
in itself. Continuing in this way, we see that the entire polygon fi,1, . . . , fi,N is
mapped to the next polygon fi+1,1, . . . , fi+1,N. This proves the following result,
extending the main result of Strubecker [25] to the discrete case:
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Theorem 12. Affine minimal nets formed by bilinear patches whose axes are parallel
possess remarkable geometric properties if the axis direction is seen as isotropic direction
in isotropic 3-space: The nets are discrete surfaces of constant relative curvature
K = −τ2 and may be generated as Clifford translational nets whose generating polygons
have constant isotropic torsion ±τ; each of these polygons lies in a linear line complex.

The latter statement follows easily from the fact that a linear line complex
with isotropic axis has the following property: Two points on a straight line
of the complex, apart at a distance s, have null planes whose angle σ is p · s, p
being the parameter of the complex. Obviously, polygons whose edges lie in
such complexes are exactly those which possess constant isotropic torsion (for
the smooth limit case, see [25]; for the geometry of linear line complexes, see
e.g. [15]).

These considerations also reveal the shape limitations of the A-nets f under
consideration. We see that the net polylines within the same family have very
similar shape, as they are related by special affine maps (isotropic Clifford
translations).

Conclusion and future work
Motivated by applications in architecture, we have shown that gluing bi-

linear patches together in a smooth way leads to interesting discrete versions
of affine minimal surfaces which share a lot of essential properties with their
classical counterparts. We have addressed the design of these patchworks and
also contributed new results to discrete affine minimal surfaces.

A natural path for future work is to use slightly more general patches
than just bilinear ones for forming smooth surfaces, but keeping in mind the
simple contructability of the patches in view of architectural applications. In
particular, we plan to address the global optimization and shape design of
patchworks from rational bilinear patches (introduced by Huhnen-Venedey
and Rörig [12]). Moreover, one should couple fabrication-aware shape design
with other important issues such as structural considerations. For example, we
had motivated section 4 with structural properties of the individual panels, but
did not yet care about the structural properties of the entire surface. This needs
further study.
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ver Krümmung, Sitz. Öst. Ak. Wiss 160 (1951) 41–77.

[28] Y. Yang, Y. Yang, H. Pottmann, N. Mitra, Shape space exploration of con-
strained meshes, ACM Trans. Graphics 30, proc. SIGGRAPH Asia.

23


	Introduction
	Previous work
	Contributions and overview

	Joining bilinear patches smoothly
	Surface design and shape exploration
	Affine minimal meshes from patch axes
	Affine minimal meshes from diagonal strips
	Affine minimal meshes from zigzag polygons
	Affine minimal meshes by refinement

	Smoothly joined bilinear patches with parallel axes
	Construction from planar translational nets
	Some basics of isotropic geometry
	Viewing smoothly joined bilinear patches with parallel axes as surfaces in isotropic space


