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Fig. 1. Triangle meshes with controlled roughness as a design element in architectural applications. The ceiling of the auditorium has been computed from a
triangulated reference surface by an automatic roughening algorithm, which creates a structured visual appearance and enables the designer to control the
dihedral angles under orientation constraints. The façade is a triangle mesh whose vertices lie on a given smooth reference surface. The mesh has been created
by a remeshing algorithm that locally aligns the mesh edges such that the desired level of roughness is achieved, with a smooth appearance towards the
entrance, and rougher towards the right-hand side. The alignment of mesh edges depends on the local curvature behavior and is based on our thorough
analysis of the relation between the local positioning of vertex stars and the visual appearance of a mesh.

Motivated by the emergence of rough surfaces in various areas of design,

we address the computational design of triangle meshes with controlled

roughness. Our focus lies on small levels of roughness. There, roughness or

smoothness mainly arises through the local positioning of the mesh edges

and faces with respect to the curvature behavior of the reference surface. The

analysis of this interaction between curvature and roughness is simplified

by a 2D dual diagram and its generation within so-called isotropic geometry,

which may be seen as a structure-preserving simplification of Euclidean

geometry. Isotropic dihedral angles of the mesh are close to the Euclidean

angles and appear as Euclidean edge lengths in the dual diagram, which also

serves as a tool for visualization and interactive local design. We present

a computational framework that includes appearance-aware remeshing,

optimization-based automatic roughening, and control of dihedral angles.
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1 INTRODUCTION
Computational design of surfaces is ubiquitous across industrial

design, with notable exemplars in architecture and the automotive

industry. In the latter, smooth surfaces with added design aesthetics

(i.e. class A surfaces) are commonplace, partly for aerodynamics con-

cerns and due to established tradition. Nevertheless, newer, modern

designs are introducing alternative elements, such as prominent fea-

ture lines, and faceted finishes (see Fig. 2), in particular for interior

design. As new digital design approaches go beyond the traditional

choice of spline surfaces in CAD systems, they facilitate the con-

struction of alternatives to perfectly smooth surfaces.

It is not surprising that now designers start to play with visual

effects achievable via a certain level of roughness in the designed
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Fig. 2. Motivation for controlled roughness design tools: there is an interest in
rough surfaces across areas of design, from architecture and interior design,
to automotive design. Left : Façade of the Hotel Indigo in Vienna, Austria.
Middle: Multi-function theatre at the KAFD Conference Center in Riyadh,
Saudi Arabia. Right : Interior roof of the recently launched BMW XM.

surfaces. A natural choice of surface representations which allow us

to achieve roughness are meshes with planar faces and in particular

triangle meshes. The design of meshes depends on their application.

So far, the focus in research has been on mesh quality for finite

element computations, on approximation error to a given smooth

surface while keeping the mesh size within limits, on smoothing

meshes that originally arise from noisy data points, and more re-

cently on visual smoothness [Pellis et al. 2019].

We are not aware of any research dealing with controlled rough-
ness in triangle meshes. When talking about roughness, one has to

distinguish between two quite different scenarios. The first concerns

meshes with a strong level of roughness. Such surfaces appear like

a 3D texture mapped onto a smooth surface (see Fig. 3). Compu-

tationally, one can map a given triangle mesh 𝑆 with a standard

parameterization technique onto a 2Dmesh 𝑆∗, design a rough mesh

by adding third coordinates 𝜁𝑖 to its vertices 𝑣∗
𝑖
and obtain a rough-

ened 3Dmesh 𝑆𝑟 via vertex displacement, 𝑣𝑟
𝑖
= 𝑣𝑖 +𝜁𝑖𝑛𝑖 , along vertex

normals of 𝑆 . For significant deviations from the reference mesh,

roughness will be kept.

Amore subtle topic ismeshes with a moderate level of roughness. In
the 3D texture approach, small deviations may completely disappear

due to the curvature of the reference surface. As an example, take a

convex surface. Each vertex can be relocated within a certain domain

by keeping convexity, which is a form of visual smoothness [Pellis

et al. 2019]. In other words, achieving some roughness can require

quite strong displacements of mesh vertices. On the other hand,

Fig. 3. A strong level of roughness can be achieved via texture mapping.
A negatively-curved reference surface (left) is meshed, and subsequently
roughened (middle) by displacing vertices along vertex normals, according
to a roughening pattern designed on a parameterization of the mesh (right).

𝑀1 𝑀2 𝑀3

Fig. 4. Roughness achieved over a 2D mesh may disappear when mapping
it to a curved 3D surface. The reflection of the cloudy sky (provided in the
Appendix) on the surface helps visualize its visual smoothness or roughness.
Left: A smooth mesh with vertices inscribed in an elliptic paraboloid has
roughness measure R(𝑀1 ) = 0.070, according to Sec. 2.1 and Eqn. (1).
Middle: The mesh is roughened by mild vertex displacements, R(𝑀2 ) =
0.113. The visual appearance of the mesh does not change much. Right: The
vertices of the mesh stay inscribed in the elliptic paraboloid, but a different
triangulation already exhibits a certain level of roughness, R(𝑀3 ) = 0.168.

another triangle mesh with vertices on the same smooth reference

surface may already exhibit roughness (see Fig. 4).

Meshes with a lower level of roughness may have their vertices

on a smooth underlying design sur-

face, but the triangulation is chosen

so that small variations in triangle nor-

mals appear which are not present in

the underlying smooth surface. An ex-

ample is seen in the inset, where two

families of edges in a triangulation lie

on rulings of a hyperboloid. Here, the

choice of triangulation has most likely

been based on fabrication considera-

tions, but the slight visual roughness

adds an interesting aesthetic quality

to the design.

The present paper addresses the computational design of triangle

meshes with controlled roughness over given reference surfaces.

While we provide algorithms for achieving strong and mild levels

of roughness, the focus is on the latter. In all cases we are interested

in some type of regularity. This distinguishes our work from an

obvious way of achieving a rough appearance, namely by random

perturbation of mesh vertices (Fig. 5). While this approach may

be useful in certain applications, we do not see it as a challenging

research problem and therefore focus on more structured designs.

𝑀1 𝑀2

Fig. 5. Controlled roughness is inherently different from random pertur-
bations. Left: A mesh is roughened by randomly displacing vertices along
vertex normals, R(𝑀1 ) = 0.122. Right : The same mesh is roughened with
our method, using comparable displacements, R(𝑀2 ) = 0.163.
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1.1 Related work
Mesh smoothing, also known as mesh denoising, filtering or fair-

ing, is a core topic of geometry processing and thus received a lot

of attention. We just mention a few contributions ([Taubin 1995;

Desbrun et al. 1999; Fleishman et al. 2003; Nealen et al. 2006]) and

point to the possibility of applying reverse smoothing operations

to achieve some type of roughness [Vallet and Lévy 2008]. More

importantly, as many of these techniques move vertices based on

local approximations (e.g., moving least squares [Levin 1998]), the

result of smoothing may still be a mesh with mild roughness in our

sense, even if dominant mesh polylines get smoothed as well. In

other words, mesh smoothing applied to a mesh with subtle rough-

ness will not remove roughness, as the directions of edges in vertex

stars, in relation to the local curvature behavior, will not change

much, but contributes essentially to the visual appearance.

Vertex stars whose Gauss images are free of self-intersections

play a key role in smoothness concepts for polyhedral surfaces

[Jiang et al. 2016; Pellis et al. 2019; Günther et al. 2020]. It has been

shown that principal meshes exhibit the best visual smoothness of

polyhedral surfaces [Pellis et al. 2019], if one measures smoothness

by an energy proportional to Eqn. (1), that is the sum of absolute

values of dihedral angles, weighted by the respective edge lengths.

The focus in that paper is on negatively curved areas, but we will see

that non-smoothness is also appearing in areas of positive curvature.

We will later use a concept from graphic statics to visualize smooth-

ness and roughness in meshes. Thus, work by Orden et al. [2004]

on pseudo-triangulations whose reciprocal diagrams have no self-

intersections, can also be seen as a contribution to the smoothness

of meshes.

Roughness in meshes can be a result of their generation, for ex-

ample in a folding process. Thus, rough meshes appear in various

contributions to origami and kirigami, but there the existence of

a planar unfolding is the dominant property rather than the con-

trol of roughness. We point to a survey on origami and kirigami

approaches [Callens and Zadpoor 2018], Miura-origami-like rep-

resentations of non-planar shapes [Dudte et al. 2016], corrugated

surfaces resulting from quad-based kirigami [Jiang et al. 2020], the

computation of folding patterns to produce an origami model of a

given shape [Tachi 2010; Demaine and Tachi 2017], to a monograph

on folding algorithms [Demaine and O’Rourke 2007] and surfaces

with curved folding patterns that leads to a wrinkled appearance

[Demaine et al. 2015; Kraft et al. 2023]. Roughness of a different type

is present in crumpled paper [Ben Amar and Pomeau 1997]. Tymms

et al. [2020] aggregate a custom metric into their optimization ob-

jective to achieve visual similarity of height fields under under a set

of different lighting conditions.

Some level of un-smoothness in meshes also appeared in a study

of meshes with planar faces that are arranged as in semi-regular

patterns in the plane. Most works, such as [Li et al. 2014], focus

on computing meshes with planar faces that follow mesh aesthet-

ics imposed by fairness, vertex valence regularity, and face shape

regularity. While certain types of patterns can adapt to a given refer-

ence surface by shape changes in faces, others, for example tri-hex

patterns, keep their appearance at the price of a certain level of

roughness [Jiang et al. 2015b]. A similar effect has been observed

when attempting to compute meshes with repetitive faces for archi-

tectural applications [Fu et al. 2010; Singh and Schaefer 2010]. An

extreme level of element repetition is achievable with very rough

surfaces [Huard et al. 2015].

1.2 Contributions and overview
We present a framework for the computational design of triangle

meshes with controlled roughness. Its main features are briefly

outlined in Section 2.

The visual appearance of a triangle mesh 𝑇 depends on the di-

hedral angles at its edges. Instead of using the Euclidean Gauss

image to visualize these angles, we propose a related, but simpler

method that is rooted in isotropic geometry. Its basics are described

in Section 3.1. The isotropic viewpoint naturally associates with

𝑇 a combinatorially dual 2D diagram 𝑇 ∗ whose edge lengths are a
good approximation of Euclidean dihedral angles (Section 3.2) and

which we use for visualization of roughness and as a tool for design

and analysis. The embedding into isotropic geometry is effectively

used in Section 3.3 for studying the relationship between the visual

appearance of a triangle mesh and the position of its vertex stars

relative to the local curvature behavior.

Section 4.1 uses the geometric analysis to develop an algorithm

that uses remeshing as a tool to lay out a triangle mesh with the

desired level of roughness on a given surface. In Section 4.2, we

provide details on the manipulation tool based on the dual diagram.

An optimization framework for the design of roughness in meshes

whose vertices are not confined to the reference surface is presented

in Section 4.3.

In Section 5 we add further details on the implementation and

present results including the verification of their visual appearance

by physical models. We conclude with a few pointers towards direc-

tions for future research.

start
what type of

controlled roughness

is needed?

does the

original mesh need

to be kept?

what is the

surface

representation?

are there any

explicit angle

requirements?

(re-)meshing

algorithm

(§ 4.1: Alg. 21)

guided-projection

algorithm

(§ 4.3)

dual diagram

manipulation

(§ 4.2: Alg. 24)

end

Global

Local

Mesh

Smooth

surface

Yes

No

Yes

No

Fig. 6. Framework for mesh design with controlled roughness. Our local and
global design tools are the key components of our proposed design frame-
work, illustrated by this flowchart. Processes are followed by numerical
optimization in order to enforce design constraints with high accuracy. Stan-
dalone guided-projection optimization can also provide control over mesh
roughness.
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𝑀1 𝑀2

Fig. 7. Left : An architectural roof surface is originally meshed so that it
is visually smooth, R(𝑀1 ) = 0.062. Right : Using our design tools, we can
remesh the surface so that its appearance subtly varies from smooth to
rough, R(𝑀2 ) = 0.106. The corresponding (partial) dual diagrams clearly
characterize the roughness of the meshes. Different edge colors indicate
angles of different signs.

2 FRAMEWORK FOR MESH DESIGN WITH
CONTROLLED ROUGHNESS

We begin by providing an intuitive description of controlled rough-
ness on a polyhedral mesh, in opposition to smoothness. Consider a

triangle mesh as a discrete approximation of an underlying smooth,

continuous surface. The smoother the triangle mesh, the better it

approximates the surface. This is often characterized through the

dihedral angles of the mesh: smaller dihedral angles correspond to

smoother meshes, with the limit of increasingly finer triangulations

leading to vanishing angles.

It is clear that there is no analogous continuum for rougher

meshes. In general, dihedral angles can be increased by variably

lifting mesh vertices off the underlying surface. While such a mod-

ified mesh does appear roughened, it may no longer be a proper
representation of the reference surface, meaning that the neighbour-

hood of a vertex of the mesh does not resemble the shape of the

neighbourhood of the corresponding point on the smooth surface.

We are therefore interested in controlled roughness, where we

design rough representations of surfaces. We do this with two dif-

ferent approaches: first, by designing an algorithm that moderately

increases dihedral angles, subject to restrictions. Secondly, by adapt-

ing the triangulation of meshes depending on the surface curvature

and the required level of roughness.

The connotation of controlled roughness is two-fold: since our

motivation spawns from computational design, we are also inter-

ested in controlling controlled roughness. To this end, we developed

design tools for guiding global roughness for overall aesthetics, as

well as tools for local manipulations for finer adjustments.

2.1 Measuring controlled roughness
Despite not having a proper metric on controlled roughness, we

can nevertheless assign a measure of roughness to a mesh. Given

a polyhedral mesh 𝑀 = (𝑉 , 𝐸, 𝐹 ), with edge set 𝐸, where edge

𝑒 ∈ 𝐸 has length ℓ𝑒 and dihedral angle 𝛼𝑒 , we define the normalized

roughness measure R(𝑀) as

R(𝑀) = 1∑
𝑒∈𝐸 ℓ𝑒

∑︁
𝑒∈𝐸

ℓ𝑒 |𝛼𝑒 |. (1)

This measure is a slight modification of energy functionals com-

monly used in the mesh smoothing literature, see e.g. [Pellis et al.

2019]. It may not be used as an energy functional on roughness, yet

it is still useful as a qualitative descriptor for roughness, especially

when comparing different polyhedral representations of the same

underlying surface.

2.2 Visualizing controlled roughness
From an aesthetic consideration, roughness is mainly a property

of the visual appearance of the surface. Thus it is best revealed

by the reflection patterns on shiny surfaces. This motivates the

style of rendering across the figures, with flat shading and reflective

materials. We often use reflections from a cloudy sky environment

map (see e.g. Fig. 4, Fig. 7 or Fig. 15). Notably, we are able to capture

the visual appearance of a fabricated rough model (see Fig. 27 and

Fig. 31).

Since we control roughness by adjusting dihedral angles, our

design tools need to build an intuition for the behaviour of local

changes. Visualizing dihedral angles in 3D Euclidean space can be

based on the Gauss image, see e.g. [Pellis et al. 2019]. We use a

simpler dual diagram of the mesh. It is related to the Gauss image,

but easier to compute and analyze, as introduced later in Sec. 3.2.

Given a point of interest on a mesh with a slightly rough triangu-

lation, we compute a locally adapted Cartesian frame that is aligned

with the mesh normal. In this frame, we find the dual diagram of

a neighbourhood of the point. The dihedral angles between faces

in the mesh are shown as lengths of segments between points on

the diagram (see Sec. 3.1). Combinatorially regular vertex stars are

shown as hexagons.

Depending on the curvature of the reference surface at that point,

roughness is characterized by the shape of such hexagons (see

Sec. 3.3). Therefore, we can use the dual diagram as a proxy for

visualizing roughness (see Fig. 8). Moreover, changes in the dual

diagram lead to changes in roughness; this is the basis for our design

tool discussed in Sec. 2.3.

(b)

(a)

(d)

(c)

Fig. 8. Our visualization tool can help easily identify the roughness of a
region. Insets (a)-(b) show diagrams typical for regions of positive Gaussian
curvature with (b) rougher than (a), whereas insets (c)-(d) show diagrams,
characteristic of regions of negative Gaussian curvature, with (c) rougher
than (d). The interpretation of diagrams is discussed in Section 3.3.
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If the reference surface at the point is planar, or has very small

curvature, the dual diagrammight be degenerate or become crowded

with overlapping hexagons in a small region. In such a case, our

visualization tool allows lifting the area of interest onto a rotational

paraboloid of increasing curvature. In the local frame, this amounts

to moving each vertex (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 ) to (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 +𝑘 (𝑥2

𝑖
+𝑦2

𝑖
)). The effect

of applying this transformation in 3D Euclidean space translates

to spreading out the dual diagram (see Fig. 9). For a small enough

curvature, i.e. small 𝑘 , dihedral angles change only slightly and the

diagram retains its characteristic features.

2.3 The dual diagram as an interactive local design tool
Using the dual diagram as an interactive tool is an application of

the geometric theory (see Sec. 3) within an optimization framework.

Again, the dual diagram visualizes dihedral angles at edges of a

mesh as lengths of segments. Given explicit angle requirements, it

is easy to scale these segments as needed. Duality also provides a

means to map back these requirements onto the mesh, which can

later be optimized for refinement. This tool is illustrated in Fig. 10.

Details regarding the algorithm and implementation are provided

in Sec. 4.2 and summarized in Alg. 24.

2.4 Global design tools for controlled roughness
As shown in Fig. 4, and later elaborated on in Sec. 3, the visual

appearance of a surface heavily depends on its discretization, and

in particular, its triangulation. A triangle mesh with vertices on

a smooth underlying surface may appear smooth, while another

mesh with the same vertices but different triangles can have a very

rough appearance. It stands to reason that an interactive tool to

design controlled roughness is based on laying out a mesh on a

surface where edges align with certain directions. We introduce our

roughening algorithm (Alg. 21) in Sec. 4.1.

This originally global design tool can also be used to control

roughness locally, by keeping edge directions fixed in the areas

where the existing rough appearance is to be kept. In this manner,

you can design surfaces with varying appearance from smooth to

rough (see Fig. 7). The flowchart in Fig. 6 shows how our design

tools can be applied in different design input scenarios.

Fig. 9. Our visualization tool can also display dual diagrams for areas of
small curvature. Left: A rough mesh where the dual diagrams of the vertex
stars overlap and are not very informative. Right: Lifting onto a slightly
curved paraboloid (yellow), the dual diagrams spread out and are easier to
interpret. A highly curved paraboloid removes roughness, as seen in the
dual diagram in the bottom right, confirming the loss of mild roughness by
a simple 3D texture mapping approach (cf. Figs. 3 and 4).

Fig. 10. Illustration of the dual diagram manipulation tool. The dual dia-
gram of the neighborhood of a given edge is shown on the left, to which a
transformation is applied, in the middle. The resulting changes in the dual
diagram on the right are mapped back onto the neighborhood.

3 GEOMETRIC CONCEPTS
In this section, we investigate the relation between the visual ap-

pearance of a triangulated surface 𝑇 and the curvature of a smooth

underlying reference surface 𝑆 . We focus on small dihedral angles,
since their appearance as visually smooth or rough is subtle and

strongly depends on the curvature of 𝑆 .

We use a locally adapted simple non-Euclidean geometry, the

so-called isotropic geometry (see Sec. 3.1), in which dihedral angles

are easier to compute than in Euclidean geometry and which do

not differ much from the Euclidean angles near the area of interest.

As shown in Sec. 3.2, this geometry naturally leads to a 2D dual

diagram𝐷 in which isotropic dihedral angles on the original surface

𝑇 appear as edge lengths in 𝐷 . It will turn out that the dual diagram

is a projection of the classical Gauss image and in our context easier

to deal with than the Gauss image.

This dual diagram supports us in studying the connection be-

tween the visual appearance (level of roughness) of vertex stars in

a triangulation and the positioning of the vertex star w.r.t. the local

curvature behavior (see Fig. 15 and Sec. 3.3).

3.1 Locally adapted isotropic geometry
We consider a point 𝑂 of the reference surface 𝑆 and its neigh-

bourhood. We first compute a locally adapted Cartesian (𝑥,𝑦, 𝑧)
coordinate system, by aligning the 𝑧-axis with the surface normal.

Depending on the nature of the given reference surface the normal

is estimated with a standard averaging/fitting method. The origin

may be taken as barycenter of the neighbourhood, but its choice

will turn out to have no influence on the dual diagram (Def. 3.6).

We associate with the (𝑥,𝑦, 𝑧) system a so called isotropic geome-
try 𝐼3. It can be seen as a simplified version of Euclidean geometry,

which has been systematically developed by K. Strubecker (see

e.g., [Strubecker 1941, 1942] and the monograph [Sachs 1990]). For a

short introduction in English, we refer to [Pottmann and Liu 2007].

Isotropic metric and motions. The metric in isotropic 3-space 𝐼3

is degenerate. It is the Euclidean metric after “forgetting” the 𝑧-

component:

Definition 3.1. The isotropic distance (i-distance) between two
points 𝐴 = (𝑎1, 𝑎2, 𝑎3) and 𝐵 = (𝑏1, 𝑏2, 𝑏3) is defined as

𝑑𝑖 (𝐴, 𝐵) =
√︁
(𝑎1 − 𝑏1)2 + (𝑎2 − 𝑏2)2 . (2)

To simplify its description, we call the orthogonal projection

𝐴′ = (𝑎1, 𝑎2, 0) of a point𝐴 = (𝑎1, 𝑎2, 𝑎3) onto the 𝑥𝑦-planeΠ : 𝑧 = 0
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the top view. Thus, the i-distance between two points is measured

as Euclidean distance in the top view (see Fig. 11 left).

Points with the same top view lie on the same 𝑧-parallel line

and are called parallel, an unusual notion that will be justified later

(under Eqn. (6)); 𝑧-parallel lines are called isotropic lines. The i-

distance of parallel points is zero. The isotropic angle between two

non-isotropic straight lines equals the Euclidean angle in the top

view (Fig. 11, left). Very important for us is the notion of angles

between planes.

Definition 3.2. The isotropic angle between two planes 𝑃 : 𝑧 =

𝑝1𝑥 + 𝑝2𝑦 + 𝑝3 and 𝑄 : 𝑧 = 𝑞1𝑥 + 𝑞2𝑦 + 𝑞3 is defined as

𝑎𝑖 (𝑃,𝑄) =
√︃
(𝑝1 − 𝑞1)2 + (𝑝2 − 𝑞2)2 . (3)

Geometrically, the isotropic angle between two planes 𝑃,𝑄 is the

distance between the intersection points 𝑃∗, 𝑄∗ of the plane 𝑧 = 0

with the corresponding normals through 𝐻 = (0, 0, 1) (Fig. 11, left).
Just as Euclidean geometry studies properties which are invariant

under Euclidean motions (i.e., congruence transformations), iso-

tropic geometry addresses invariance w.r.t. isotropic motions. These
are affine transformations which keep the i-distance invariant. Iso-

tropic motions are affine maps which appear in the top view as

Euclidean 2D motions (cf. [Sachs 1990]). The 𝑧-coordinate trans-

forms by adding a linear function in 𝑥,𝑦 to the 𝑧-coordinates. Con-

sequently, isotropic motions are given by equations of the form

𝑥 ′ = 𝑥 cos𝛼 − 𝑦 sin𝛼 + 𝑎,
𝑦′ = 𝑥 sin𝛼 + 𝑦 cos𝛼 + 𝑏,
𝑧′ = 𝑧 + 𝑐1𝑥 + 𝑐2𝑦 + 𝑐.

(4)

Example 3.3. The isotropic motion (4) with 𝛼 = 0, 𝑐 = 1

2
(𝜅1𝑎

2 +
𝜅2𝑏

2), 𝑐1 = 𝜅1𝑎, 𝑐2 = 𝜅2𝑏, leaves the paraboloid with equation

2𝑧 = 𝜅1𝑥
2 + 𝜅2𝑦

2

invariant. It maps the origin (0, 0, 0) to (𝑎, 𝑏, 1

2
(𝜅1𝑎

2 + 𝜅2𝑏
2)).

𝑎
𝑏

𝑎′ 𝑏′𝜑

𝐴

𝐵

𝐴′
𝐵′

𝑑 𝑖
(𝐴, 𝐵
)
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Fig. 11. Left: Distances and angles in isotropic space 𝐼 3. The isotropic dis-
tance 𝑑𝑖 (𝐴, 𝐵) between two points 𝐴, 𝐵 ∈ 𝐼 3 is measured as Euclidean
distance between their top views 𝐴′, 𝐵′. Similarly, the isotropic angle be-
tween two lines 𝑎,𝑏 is measured as Euclidean angle between their top views
𝑎′, 𝑏′ . The isotropic angle between two planes 𝑃,𝑄 is the distance between
the intersection points 𝑃∗,𝑄∗ of the plane 𝑧 = 0 with the corresponding
normals through 𝐻 = (0, 0, 1) . Right: The polarity 𝜎 on the unit sphere of
parabolic type 𝑆𝑖 . A plane 𝑃 (red) is mapped to its pole 𝜎 (𝑃 ) and conversely,
a point𝐴 is mapped to its polar plane 𝜎 (𝐴) . The tangential cone with vertex
𝐴 touches 𝑆𝑖 along the intersection of 𝑆𝑖 with 𝜎 (𝐴) (for 𝐴 outside 𝑆𝑖 ).

Isotropic spheres. In isotropic space 𝐼3 there are two types of

spheres. A sphere of cylindrical type consists of points with constant

i-distance to a fixed point, which is a cylinder with a circle as top

view. The spheres of parabolic type, which have constant isotropic

Gaussian curvature and constant isotropic mean curvature, arise

from uniform scaling and translation of the parabolic unit sphere
[Sachs 1990],

𝑆𝑖 : 2𝑧 = 𝑥2 + 𝑦2, (5)

which is a rotational paraboloid from the Euclidean perspective.

Metric duality. The geometry in 𝐼3 possesses a so called metric
duality which does not exist in Euclidean space. At first, this metric
duality 𝜎 is a bijective map between points and non-vertical planes:

𝜎 : (𝑢, 𝑣,𝑤) ←→ 𝑧 = 𝑢𝑥 + 𝑣𝑦 −𝑤. (6)

Geometrically, this duality is the polarity 𝜎 with respect to the

parabolic unit sphere 𝑆𝑖 (see Fig. 11, right).

Parallel planes 𝑧 = 𝑢𝑥 +𝑣𝑦−𝑤𝑖 with 𝑖 = 1, 2 correspond to parallel

points (𝑢, 𝑣,𝑤𝑖 ) (hence the notion of parallel points). Applying 𝜎

twice is the identity. Eqn. (2) and Eqn. (3) immediately imply the

following lemma.

Lemma 3.4 ([Sachs 1990]). The metric duality 𝜎 maps two planes
𝑃,𝑄 with angle 𝑎𝑖 (𝑃,𝑄) to two points 𝜎 (𝑃) = (𝑝1, 𝑝2,−𝑝3), 𝜎 (𝑄) =
(𝑞1, 𝑞2,−𝑞3) with i-distance 𝑑𝑖 (𝜎 (𝑃), 𝜎 (𝑄)), where

𝑑𝑖 (𝜎 (𝑃), 𝜎 (𝑄)) = 𝑎𝑖 (𝑃,𝑄),

and hence the name metric duality.

The metric duality preserves metric quantities even between

different types of objects.

Gauss maps. In Euclidean geometry, the Gauss image 𝛾 (𝑃) of
an oriented plane 𝑃 with unit normal vector n is the point on the

Euclidean unit sphere 𝑆2
with coordinate vector n. The tangent

plane of 𝑆2
at n is parallel to 𝑃 . Hence, 𝛾 maps an oriented plane 𝑃

to a point of 𝑆2
which has a parallel oriented tangent plane.

The isotropic Gauss map 𝛾𝑖 (i-Gauss map) maps a plane 𝑃 to that

point 𝛾𝑖 (𝑃) of the parabolic unit sphere 𝑆𝑖 (Eqn. (5)) whose tangent
plane is parallel to 𝑃 (which in contrast to the Euclidean case is

unique even without an orientation of the plane).

Lemma 3.5. The i-Gauss image of a plane 𝑃 with equation 𝑧 =

𝑝1𝑥 + 𝑝2𝑦 + 𝑝3 is the contact point 𝛾𝑖 (𝑃) = (𝑝1, 𝑝2,
1

2
(𝑝2

1
+ 𝑝2

2
)) of the

parallel tangent plane. Furthermore, the top view of the i-Gauss image
𝛾𝑖 (𝑃) and the top view of the dual image point 𝜎 (𝑃) of a plane 𝑃 are
identical.

A proof can be found in the Appendix.

Definition 3.6. We denote this common top view of 𝜎 (𝑃) and
𝛾𝑖 (𝑃), which has coordinate vector p∗ = (𝑝1, 𝑝2, 0), by 𝑃∗. For a
polyhedral surface 𝑇 the combinatorially dual mesh in the 𝑥𝑦-plane
with vertices 𝑃∗ for all faces 𝑃 ∈ 𝑇 is called dual diagram.

We will elaborate more on the dual diagram in Sec. 3.2. We are

mostly interested in the map 𝑃 ↦→ 𝑃∗, since the Euclidean distance

between points 𝑃∗, 𝑄∗ equals the i-angle between planes 𝑃,𝑄 (which

we want to be able to control).
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Π

c𝑖

𝑂
𝑃∗𝑃∗𝑃∗𝑃∗𝑃∗𝑃∗𝑃∗𝑃∗𝑃∗𝑃∗𝑃∗𝑃∗𝑃∗𝑃∗𝑃∗𝑃
∗
𝑃∗

𝛾 (𝑃 )

𝛾𝑖 (𝑃 )𝛾𝑖 (𝑃 )𝛾𝑖 (𝑃 )𝛾𝑖 (𝑃 )𝛾𝑖 (𝑃 )𝛾𝑖 (𝑃 )𝛾𝑖 (𝑃 )𝛾𝑖 (𝑃 )𝛾𝑖 (𝑃 )𝛾𝑖 (𝑃 )𝛾𝑖 (𝑃 )𝛾𝑖 (𝑃 )𝛾𝑖 (𝑃 )𝛾𝑖 (𝑃 )𝛾𝑖 (𝑃 )𝛾𝑖 (𝑃 )𝛾𝑖 (𝑃 )

𝑆𝑖
𝑆2

Fig. 12. The isotropic unit
sphere 𝑆𝑖 is in third-order
contact with a Euclidean
unit sphere (center c𝑖 ) at
its Euclidean vertex𝑂 . The
diagram point 𝑃∗ ∈ Π of a
plane 𝑃 arises from the Eu-
clidean Gauss image 𝛾 (𝑃 )
of 𝑃 via projection from
the sphere center c𝑖 onto
plane Π.

Let us consider a point 𝑂 on a smooth surface 𝑆 . We center our

coordinate system at 𝑂 such that the 𝑥𝑦-plane coincides with the

tangent plane. The parabolic unit sphere 𝑆𝑖 is now in tangential

contact with 𝑆 . The Euclidean unit sphere 𝑆2
, centered at c𝑖 =

(0, 0, 1), is in third order contact with 𝑆𝑖 at 𝑂 (see Fig. 12).

Let us take 𝑆2
and 𝑆𝑖 as carriers of Euclidean and isotropic Gauss

images of our surface 𝑆 . Consequently, the two Gauss maps 𝛾 and

𝛾𝑖 do not differ a lot in the vicinity of 𝑂 .

The normal vector (𝑝1, 𝑝2,−1) of 𝑃 equals p∗ − c𝑖 (see Fig. 12),
showing that 𝑃∗ arises from𝛾 (𝑃) by central projection from the sphere
center c𝑖 onto the plane Π (which is called gnomonic projection).
The Euclidean angle between two planes 𝑃 and 𝑄 equals the

Euclidean arc length of the geodesic arc connecting the two points

𝛾 (𝑃), 𝛾 (𝑄) ∈ 𝑆2
. The gnomonic projection maps 𝛾 (𝑃), 𝛾 (𝑄) to the

straight line segment 𝑃∗𝑄∗. The distance between diagram points

𝑃∗, 𝑄∗ is the isotropic angle 𝑎𝑖 (𝑃,𝑄) between planes 𝑃,𝑄 (see also

Fig. 11 left). Clearly, distances are distorted, but not much in the

vicinity of𝑂 . We summarize these properties in the following lemma,

which is proved in the Appendix.

Lemma 3.7. The Euclidean distance 𝑑 in the dual diagram approxi-
mates the Euclidean angle 𝜑 between tangent planes of 𝑆2 in the vicin-
ity of 𝑂 up to order O(𝜑2). Similarly, if 𝑆𝑖 approximates a polyhedral
surface 𝑇 , then the edge lengths in the dual diagram approximate the
Euclidean dihedral angles in the vicinity of 𝑂 up to second order.

3.2 Dual diagram of a polyhedral surface
In this section, we study the dual diagram (Def. 3.6). It is the top

view of the dual image (which is identical with the top view of the

i-Gauss image; cf. Lemma 3.5) of the tangent planes of a surface 𝑆

and of the face planes of a polyhedral surface𝑇 . The dual diagram is

helpful for geometric analysis, visualization and interactive editing.

Most of our discussion is on triangle meshes𝑇 , but at some places

quad meshes and hex meshes with planar faces, which we call PQ
meshes and Phex meshes, respectively, appear.

The polarity 𝜎 maps the intersection line 𝑙 = 𝑃 ∩𝑄 of two planes

𝑃,𝑄 to the line connecting the image points of the planes,𝜎 (𝑃), 𝜎 (𝑄)
—that is, 𝜎 (𝑙) = 𝜎 (𝑃)∨𝜎 (𝑄). We look again at the top views. Normal

vectors of the planes 𝑃,𝑄 aren𝑃 = (𝑝1, 𝑝2,−1) andn𝑄 = (𝑞1, 𝑞2,−1)
and thus

l = n𝑃 × n𝑄 = (𝑞2 − 𝑝2, 𝑝1 − 𝑞1, 𝑝1𝑞2 − 𝑝2𝑞1)

is a direction vector of 𝑙 . Its top view is obviously orthogonal to

the top view (𝑝1 − 𝑞1, 𝑝2 − 𝑞2) of 𝜎 (𝑙). Consequently, lines which
correspond in 𝜎 have orthogonal top views (see Fig. 13). One may

rotate the dual image to obtain parallel top views (see below).

Application of the duality 𝜎 to𝑇 results in a combinatorially dual

polyhedral surface 𝜎 (𝑇 ). Assuming regular combinatorics, duality

maps triangle meshes to Phex meshes and vice versa, while PQ

meshes are mapped to PQ meshes. Allowing combinatorial singu-

larities, an irregular face corresponds to an irregular vertex star and

vice versa.

Given a polyhedral surface 𝑇 with top view 𝑇 ′, we are mostly

interested in the dual diagram (cf. Def. 3.6), i.e., the top view 𝑇 ∗ of
the dual surface 𝜎 (𝑇 ). The meshes 𝑇 ′ and 𝑇 ∗ are a pair of combi-

natorially dual meshes in the 𝑥𝑦-plane. Corresponding edges are

orthogonal (Fig. 13); the length of an edge in 𝑇 ∗ is equal to the

dihedral i-angle of the corresponding edge in 𝑇 (Lemma 3.4). Since

𝜎 (𝜎 (𝑇 )) = 𝑇 , the relation between the diagrams is symmetric, i.e.,

𝑇 ′ is also the dual diagram to 𝑇 ∗ (top view of 𝜎 (𝑇 )).
For better visualization, we may rotate the diagram 𝑇 ∗ by 90

degrees about the origin and call it 𝑇 𝑟 . Then corresponding edges

in 𝑇 ′ and 𝑇 𝑟 are parallel and we have a pair of so-called reciprocal
parallel meshes (diagrams). For a plane 𝑃 : 𝑧 = 𝑝1𝑥 + 𝑝2𝑦 + 𝑝3, the

corresponding points 𝑃∗, 𝑃𝑟 in the two diagrams are p∗ = (𝑝1, 𝑝2, 0)
and p𝑟 = (−𝑝2, 𝑝1, 0), respectively.
The present setting allows us also to visualize and define a sign

of the dihedral angles. Let us consider two faces 𝑓𝑃 , 𝑓𝑄 in planes

𝑃,𝑄 meeting at an edge 𝑙 and let further 𝜈𝑃 and 𝜈𝑄 denote the unit

normal vectors pointing from 𝑙 to the interior of the faces 𝑓𝑃 and

𝑓𝑄 , respectively (see Fig. 14). Then, we may call the angle positive
(the edge convex) if the vector 𝜈𝑃 + 𝜈𝑄 has a positive 𝑧-coordinate

and negative (or concave) otherwise.
We may orient the normal vector n of the top view 𝑙 ′ of 𝑙 so that

it points from 𝑓 ′
𝑃
to 𝑓 ′

𝑄
. Then, the orientation of the vector q∗ − p∗

of the dual diagram 𝐷 agrees with that of n or −n. If n is a unit

vector, we have

q∗ − p∗ = 𝑎𝑠 (𝑃,𝑄)n,

𝑃∗
𝑄∗

l′

𝜎 (𝑙 ) ′

Fig. 13. Left: The dual diagram of a vertex star of a triangle mesh 𝑇 .
Two neighboring face planes 𝑃,𝑄 are mapped to their dual image points
𝜎 (𝑃 ), 𝜎 (𝑄 ) . Their top view 𝑃∗,𝑄∗ constitute the vertices of the dual dia-
gram (dashed red). The top views 𝑙 ′ of the edges 𝑙 of the triangle mesh𝑇
are orthogonal to the top view 𝜎 (𝑙 ) ′ of the edges 𝜎 (𝑙 ) of the dual mesh.
Right: Illustration of the top view and the dual diagram of triangle mesh
𝑇 with singularity. The combinatorics of the dual diagram is dual to the
combinatorics of original mesh𝑇 .
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where 𝑎𝑠 (𝑃,𝑄) is the signed dihedral i-angle. Using the rotated dia-

gram, we orient 𝑙 ′ so that 𝑓 ′
𝑃
lies on the left side of 𝑙 ′. Then this ori-

entation agrees with that of the edge vector q𝑟 −p𝑟 for 𝑎𝑠 (𝑃,𝑄) > 0

and is the opposite for 𝑎𝑠 (𝑃,𝑄) < 0.

Remark 3.8. The pairs of reciprocal diagrams (𝑇 ′,𝑇 𝑟 ) or (𝑇 ′,𝑇 ∗)
appear in 2D graphic statics as form and force diagram [Cremona

1890]. The edge vectors in𝑇 𝑟 are the forces acting in the correspond-

ing edges in𝑇 ′. The surface𝑇 is the polyhedral stress surface of the

2D system in equilibrium. A positive dihedral i-angle characterizes

an edge in compression, a negative angle belongs to a tension force.

The present spatial setting including the polarity with respect to a

paraboloid has already been used by Maxwell [1870] and recently re-

ceived increasing interest in computational structural design [Block

and Ochsendorf 2007; McRobie 2017; Millar et al. 2022].

If we keep the top view 𝑇 ′ but change the dihedral angles, the
dual diagram 𝑇 ∗ or 𝑇 𝑟 transforms to a parallel diagram, i.e., corre-

sponding edges in the old and new diagram are parallel.

Note also that points of a surface 𝑆 correspond to tangent planes

of the dual surface 𝜎 (𝑆). Therefore, if𝑇 is inscribed to 𝑆 (its vertices

lie on 𝑆), the dual surface 𝜎 (𝑇 ) is circumscribed to 𝜎 (𝑆) (its face
planes are tangent to 𝜎 (𝑆)).

3.3 Relation between curvature and visual appearance
Even if the vertices of a triangle mesh 𝑇 lie on a smooth reference

surface 𝑆 , the mesh 𝑇 may have a rough visual appearance. This

depends on the way in which its vertex stars are positioned with

respect to the local curvature elements (principal frames plus princi-

pal curvatures). See Fig. 15 for an example where we project regular

triangle meshes onto paraboloids.

Again, we are interested in small dihedral angles and want to be

close to the Euclidean setting. Therefore, we align our coordinate

system such that the origin is placed at a point 𝑂 whose neighbor-

hood we are interested in and such that 𝑧 = 0 is the tangent plane of

the given smooth surface 𝑆 at 𝑂 . After aligning the coordinate axes

with the principal directions, the second order Taylor approximation

𝑥 𝑦

𝑧

−p∗−p∗−p∗−p∗−p∗−p∗−p∗−p∗−p∗−p∗−p∗−p∗−p∗−p∗−p∗−p∗−p∗−q∗
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Fig. 14. Dihedral angles between two faces of a polyhedral surface in 𝐼 3 can
be oriented. If the sum 𝜈𝑃 + 𝜈𝑄 of the two edge-normal vectors pointing to
the interior of their respective faces has positive 𝑧-coordinate, we call the
angle positive. The edge vector q∗ − p∗ of the dual diagram is orthogonal to
the top view 𝑙 ′ of the edge 𝑙 and it is the signed angle 𝑎𝑠 (𝑃,𝑄 ) times the
unit normal vector n pointing from 𝑓 ′

𝑃
to 𝑓 ′

𝑄
.

Fig. 15. Regular triangle meshes projected to two paraboloids with equa-
tions 𝑧 = 4𝑥2 + 𝑦2 (top row) and 𝑧 = 𝑥2 − 𝑦2 (bottom row). The original
triangle meshes have been placed in the plane 𝑧 = 0 and rotated incremen-
tally by 15 degrees around the 𝑧-axis.

of 𝑆 in that adapted coordinate system is the osculating paraboloid
with equation

𝑆 : 2𝑧 = 𝜅1𝑥
2 + 𝜅2𝑦

2 . (7)

with 𝜅1, 𝜅2 as Euclidean principal curvatures. Euclidean and iso-

tropic normal curvatures agree at 𝑂 .

Our goal is to analyze the behavior of vertex stars in triangle

meshes of regular combinatorics that are formed by three families

of fair polylines. The key for that is a study of the behavior of

triangle meshes 𝑇 with vertices on 𝑆 , whose top views are regular
triangular lattices, defined by two independent basis vectors a, b.
We call 𝑇 an affine-regular triangulation of 𝑆 . We will show how the

choice of lattice is related to visual smoothness or roughness of 𝑇 .

Lemma 3.9. Any two vertex stars in an affine-regular triangulation
𝑇 ∗ of a paraboloid 𝑆 in Eqn. (7) are related by an isotropic motion
which appears in the top view as translation. The dual diagram 𝑇 ∗ is
a hex mesh whose faces are related by translations.

We give a proof in the Appendix. A rough surface 𝑇 belongs to

hexagons with long edges since high roughness means big dihedral

angles and therefore long edges in the dual diagram.

By Lemma 3.9, we only need to investigate a single vertex star 𝑉𝑂
of 𝑇 , with 𝑂 as central vertex. Our interest is in the corresponding

hexagon 𝑉 ∗
𝑂
. Its edges lie in the intersection lines of the plane 𝑧 = 0

(𝜎 image of 𝑂) and the 𝜎 image planes of the six remaining vertices

of 𝑉𝑂 . Let v = (𝜉, 𝜂, 1

2
(𝜅1𝜉

2 + 𝜅2𝜂
2)) be a point on the osculating

paraboloid. By Eqn. (6), its image plane under 𝜎 is 𝜎 (v) : 𝑧 = 𝜉𝑥 +
𝜂𝑦 − 1

2
(𝜅1𝜉

2 + 𝜅2𝜂
2). Its intersection line 𝐿(v)∗ in 𝑧 = 0 has the

equation

𝐿(v)∗ : 𝜉𝑥 + 𝜂𝑦 =
1

2

(𝜅1𝜉
2 + 𝜅2𝜂

2) . (8)

Using polar coordinates (𝑟, 𝜙) by substituting (𝑟 cos𝜙, 𝑟 sin𝜙) for
(𝜉, 𝜂), we obtain

𝐿(v)∗ : 𝑥 cos𝜙 + 𝑦 sin𝜙 =
𝑟

2

(𝜅1 cos
2 𝜙 + 𝜅2 sin

2 𝜙).

Let us recall Euler’s formula for the normal curvature in direction

𝜙 (see, e.g., [do Carmo 1976, p. 145] and [Sachs 1990, p.173])

𝜅𝑛 (𝜙) = 𝜅1 cos
2 𝜙 + 𝜅2 sin

2 𝜙,

which is identical for isotropic and Euclidean normal curvatures of

the paraboloid at the origin. We finally obtain the simple result:
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Fig. 16. Relation between the top view of a vertex star and its dual hexagon
at a negatively curved point. Left: Given is a vertex star 𝑉𝑂 with central
vertex𝑂 and 1-ring vertices v. The edge 𝐿 (v)∗ of the dual hexagon𝑉 ∗

𝑂
is

orthogonal to the corresponding edge from𝑂 to v. The distance from𝑂 to
𝐿 (v)∗ is 𝜅𝑛 (𝜙 ) . The affine map 𝛼 : (𝜉, 𝜂 ) ↦→ 1

2
(𝜅1𝜉,𝜅2𝜂 ) maps the 1-ring

vertices v to a hexagon whose vertices 𝛼 (v) pass through the edges of the
dual hexagon. Right: The radial diagram of the normal curvature (green)
with polar coordinates (𝜙,𝜅𝑛 (𝜙 ) ) is an algebraic curve of order 6. The dual
edges 𝐿 (v)∗ also envelope an algebraic curve of order 6 (red).

Lemma 3.10. The edge in the dual diagram being dual to the edge
𝑂v where v = (𝑟 cos𝜙, 𝑟 sin𝜙, 𝑟

2

2
(𝜅1 cos

2 𝜙 + 𝜅2𝑟 sin
2 𝜙)), is con-

tained in the line

𝐿(v)∗ : 𝑥 cos𝜙 + 𝑦 sin𝜙 =
𝑟𝜅𝑛 (𝜙)

2

. (9)

Therefore also 𝐿(v)∗ is orthogonal to e′ = (cos𝜙, sin𝜙), i.e., orthogo-
nal to the top view of the edge 𝑂v.

Orienting the line 𝐿(v)∗ with the normal e′, the origin has signed

distance 𝑟𝜅𝑛 (𝜙)/2 to it (see Fig. 16). Up to scaling with factor 𝑟/2,
related to the scale 𝑟 appearing in the vertex star, the orthogonal

base point of potential diagram edges 𝐿(v)∗ lie on the curve with

polar coordinate representation 𝑟 = 𝜅𝑛 (𝜙) (the pedal curve of 𝐿(v)∗).
This curve should not be confused with the Dupin indicatrix which

is the curve with polar representation 𝑟 = 1/
√︁
|𝜅𝑛 (𝜙) |. Our pedal

curve is still a rather simple rational curve of order 6, with equation

(𝑥2+𝑦2)3 = (𝜅1𝑥
2+𝜅2𝑦

2)2 (for 𝜅1 = 𝜅2 it is a circle). This geometric

meaning of edges in the dual face𝑉 ∗
𝑂
of a vertex star is very helpful

for subsequent considerations.

Eqn. (8) implies another simple construction of 𝑉 ∗
𝑂
from the top

view 𝑉 ′
𝑂
of the vertex star given by the following lemma.

Lemma 3.11. The edge 𝐿(v)∗ corresponding to a vertex v with top
view v′ = (𝜉, 𝜂) is orthogonal to (𝜉, 𝜂) and passes through 𝛼 (v′) where
𝛼 is the affine map given by 𝛼 : (𝜉, 𝜂) ↦→ 1

2
(𝜅1𝜉, 𝜅2𝜂) (see Fig. 16).

For the inverse construction we start from a line 𝐿(v)∗ : 𝑥 cos𝜙 +
𝑦 sin𝜙 = ℎ and obtain the top view of the corresponding vertex via

(𝜉, 𝜂) = 2ℎ

𝜅𝑛 (𝜙)
(cos𝜙, sin𝜙). (10)

Before proceedingwith the discussion, where the sign of Gaussian

curvature 𝐾 = 𝜅1𝜅2 will play an important role, we mention two

useful facts which we prove in the Appendix.

Lemma 3.12. If an affine-regular triangulation of a paraboloid is
transformed under an affinemap𝛼 thatmaps isotropic lines to isotropic
lines, the dual diagram is also transformed by an affine map 𝛼∗.

Affine-regular vertex stars are symmetric w.r.t. the 𝑧-axis, thus

invariant w.r.t. 𝛼 with (𝑎1, 𝑎2, 𝑎3) = (−1,−1, 1), and thus the dual
hexagons are centrally symmetric due to 𝛼∗ : (𝑥,𝑦) ↦→ (−𝑥,−𝑦).

If one is only interested in the essential types of diagram shapes

for a specific sign of the Gauss curvature, it is by Lemma 3.12

enough to consider the three special cases, where (𝜅1, 𝜅2) equals
(1, 1), (1,−1) and (1, 0).
We call a vertex star with central vertex 𝑂 convex, if it lies on a

convex pyramid with tip 𝑂 . While in geometry we often extend a

cone or pyramid to both sides of the tip 𝑂 , here we are not doing

that. The following Lemma is proved in the Appendix.

Lemma 3.13. A convex vertex star 𝑉𝑂 is associated with a convex
diagram 𝑉 ∗

𝑂
.

However, a convex hexagon 𝑉 ∗
𝑂
does not imply a convex vertex

star 𝑉𝑂 , as the vertices do not have to lie on a convex pyramid; the

vertices could be on different sides of the pyramid tip𝑂 (see Fig. 17).

3.3.1 Dual diagrams and iso-
tropic dihedral angles for prin-
cipal symmetric vertex stars.
We now discuss vertex stars

𝑉𝑂 which are symmetric w.r.t.

the principal curvature direc-

tions, i.e., symmetric w.r.t. the

planes 𝑥 = 0 and 𝑦 = 0. For

the vertex star to be symmet-

ric in that sense two vertices

of the boundary hexagon must lie in a symmetry plane; w.l.o.g., we

choose b and e in 𝑥 = 0 and thus consider the top view of the bound-

ary hexagon of 𝑉𝑂 defined by the point a′ = (𝑟 cos𝜙, 𝑟 sin𝜙). The
top views c′, f′,d′ are immediately determined by the symmetry

(see inset) and b′ = a′ + c′ as well as e′ by the translation invari-

ance of the lattice. Consequently, c′ = (−𝑟 cos𝜙, 𝑟 sin𝜙) and b′ =
a′ + c′ = (0, 2𝑟 sin𝜙). The corresponding edges 𝐿(a)∗, 𝐿(c)∗, 𝐿(b)∗
in the dual diagram 𝑉 ∗

𝑂
are denoted by 𝐴∗,𝐶∗, 𝐵∗ (see inset). Due to

symmetry, the three edges already determine𝑉 ∗
𝑂
, and it is sufficient

to know vertices p = 𝐴∗ ∩ (𝑦 = 0) and q = 𝐴∗ ∩ 𝐵∗,

p =

(
𝑟𝜅𝑛 (𝜙)
2 cos𝜙

, 0

)
, q =

(
𝑟 (𝜅1 cos

2 𝜙 − 𝜅2 sin
2 𝜙)

2 cos𝜙
, 𝑟𝜅2 sin𝜙

)
.

The two base vectors in the symmetric hexagon 𝑉 ∗
𝑂
are therefore

e1 = q − p and e2 where

e1 = 𝑟𝜅2 tan𝜙 (− sin𝜙, cos𝜙), e2 =

(
𝑟 (−𝜅1 cos

2 𝜙 + 𝜅2 sin
2 𝜙)

cos𝜙
, 0

)
.

The lengths of e1 and e2 are the i-dihedral angles at corresponding

edges:

Lemma 3.14. The signed i-dihedral angles 𝛼, 𝛽 in the vertex star
along edges 𝑂a and 𝑂b are

𝛼 = 𝑟𝜅2 tan𝜙, 𝛽 =
𝑟 (𝜅1 cos

2 𝜙 − 𝜅2 sin
2 𝜙)

cos𝜙
. (11)
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Equal dihedral angles. A particular case is distinguished by equal

absolute dihedral angles |𝛼 | = |𝛽 |. By equating (11), the case 𝛼 = 𝛽 ,

yields a quadratic equation for sin𝜙 with two solutions

sin𝜙1 = −1, sin𝜙2 =
𝜅1

𝜅1 + 𝜅2

. (12)

In that case the sign of the dihedral angles in the vertex star do

not change and is therefore considered smooth in comparison to

changing signs in the case 𝛼 = −𝛽 which yields

sin𝜙1 = 1, sin𝜙2 = − 𝜅1

𝜅1 + 𝜅2

. (13)

The solution sin𝜙1 = 1 is degenerate whereas the latter may be a

valid solution, depending on the value of 𝜅1/𝜅2. We will discuss the

arising cases below.

More general principal symmetric vertex stars. The search for equal
angles in a vertex star may be done by starting from a principal

symmetric hexagon𝑉 ∗
𝑂
and reconstruction of𝑉𝑂 based on Eqn. (10).

Apart from the fact that one may obtain a self-intersection in the

vertex star 𝑉𝑂 , it may not project onto an affinely regular hexagon

(diagonals parallel to edges). In our discussion above, this requires

to scale the vector b′ to 𝜎b′. This changes the isotropic dihedral
angles 𝛼, 𝛽 as follows,

𝛼 = 𝜎𝑟𝜅2 tan𝜙, 𝛽 =
𝑟 (𝜅1 cos

2 𝜙 + (1 − 2𝜎)𝜅2 sin
2 𝜙)

cos𝜙
.

The top views of these generalized principal symmetric vertex stars

can also tile the plane, and yield a triangulation with a pattern that

may be preferred for an application with controlled roughness as

a design element (see Fig. 17). Even if the generating vertex star

has |𝛼 | = |𝛽 |, the overall mesh does not have exactly this property,

since there is another type of vertex stars, as shown in Fig. 17. The

arising patterns in meshes with mild roughness may be interesting

for applications.

Fig. 17. Triangulations of an elliptic paraboloid (top), and a hyperbolic
paraboloid (bottom), which possess two types of vertex stars. One of them
is principal symmetric and appears in the dual diagram (left) as a convex
hexagon with equal edge lengths. The top views (middle) show that the
corresponding vertex stars are no longer affine-regular. The mild roughness
of the meshes is visualized by the self-intersections in the dual diagrams.
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Fig. 18. Vertex stars (shaded) and their dual polygons for an elliptic sur-
face point. Different edge colors indicate angles of different signs. The top
row shows principal symmetric stars; the one in the middle with a dual
parallelogram is at the border between convexity and non-convexity to
𝜙 = atan

√︁
𝜅1/𝜅2 and has coplanar face planes 𝑃1 = 𝑃2 and 𝑃4 = 𝑃5. Non-

intersecting, non-convex hexagons can only arise from invalid vertex stars
(bottom right).

We are now ready to discuss the possible shapes of diagrams

and roughness of vertex stars depending on the sign of Gaussian

curvature 𝐾 . A summary of findings is provided in Sec. 3.3.5.

3.3.2 Elliptic paraboloid (𝐾 > 0). We can assume 𝜅1 > 0, 𝜅2 > 0.

Up to affine transformations the shape of 𝑉 ∗
𝑂
is even determined by

choosing 𝜅1 = 𝜅2 = 1, meaning 𝑆 equals the rotational paraboloid

𝑆𝑖 . Lemma 3.11 implies that the edge 𝐿(v𝑖 )∗ of 𝑉 ∗𝑂 corresponding

to the boundary vertex v𝑖 of 𝑉𝑂 lies in the bisecting line of 𝑂v𝑖 .
The arising types are shown in Fig. 18. Bowtie-shaped centrally

symmetric hexagons 𝑉 ∗
𝑂
(without self intersection) cannot arise. In

that case, the original vertex star 𝑉𝑂 would be self-intersecting (see

Fig. 18, bottom right, and Proposition 3.16).

Remark 3.15. The bisector property is well-known in Computational

Geometry (see, e.g., [Aurenhammer et al. 2013]): To compute the

Voronoi diagram of a set of points v′
𝑖
∈ R2

, 𝑖 = 1, . . . , 𝑁 , we could

project them vertically to the rotational paraboloid to obtain points

v𝑖 ∈ 𝑆𝑖 . The tangent planes at v𝑖 , which are the polar planes 𝛿 (v𝑖 ),
create the faces of a circumscribed polyhedral surface 𝛿 (𝑇 ) whose
top view is the Voronoi diagram of the point set. The triangle mesh

𝑇 is the convex hull of the points v𝑖 ∈ 𝑆𝑖 , and its top view equals

the associated Delaunay triangulation of the points v′
𝑖
.

We now turn to general elliptic paraboloids (𝜅1 ≠ 𝜅2). Only con-

vex vertex stars, equivalently convex hexagons 𝑉 ∗
𝑂
, can be consid-

ered visually smooth. Roughness requires different signs of dihedral

angles. For the principal symmetric case, Eqn. (11) shows that 𝛼 is

always positive as we assume 0 < 𝜙 < 𝜋/2. Therefore the sign of

𝛽 is crucial. The limit where convexity turns into non-convexity is

𝛽 = 0 or in terms of 𝜙 convexity changes at tan𝜙 =
√︁
𝜅1/𝜅2 (see

Fig. 18, middle top). This particular angle 𝜙 determines so called

characteristic directions 𝑂a′,𝑂c′. These are the conjugate directions
which are also principal symmetric. Recall that conjugate directions
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(𝑥1, 𝑦1) and (𝑥2, 𝑦2) satisfy 𝜅1𝑥1𝑥2 + 𝜅2𝑦1𝑦2 = 0. Now the dihedral

angle along the edge defined by 𝑂b is zero. The triangle mesh in

that case is actually a quad mesh with planar faces where one family

of diagonals in the quads are added.

This is just a special case of the fact that conjugate directions

define planar quads (parallelograms) on the paraboloid. It does not

require principal symmetry, and thus the following simple fact

characterizes roughness.

A vertex star is rough if the top views
of its boundary vertices lie in the inte-
rior of a wedge bounded by conjugate
directions (see inset: red lines are a

pair of conjugate lines; the conic is

the Dupin indicatrix).

Roughness with exactly equal absolute values of angles 𝛼, 𝛽 im-

plies 𝛼 = −𝛽 and therefore by Eqn. (13) we must have sin𝜙2 < 0,

which violates our assumption of 0 < 𝜙 < 𝜋/2.
While we cannot get exactly equal absolute values of angles 𝛼, 𝛽

for the ‘roughness case’ 𝛼𝛽 < 0, it is still possible to control the

level of roughness. For example, we may fix the ratio 𝜌 = 𝛽/𝛼 of

dihedral angles, which amounts to a quadratic equation for sin𝜙

with the solutions

(sin𝜙)1,2 =
−𝜌𝜅2 ±

√︃
4𝜅2

1
+ 4𝜅1𝜅2 + 𝜌2𝜅2

2

2(𝜅1 + 𝜅2)
.

Equal dihedral angles 𝛼 = 𝛽 in a mesh 𝑇 with a smooth appearance

are possible with 𝜙2 in Eqn. (12); see Fig. 32.

3.3.3 Hyperbolic paraboloid (𝐾 < 0). We let 𝜅1 > 0, 𝜅2 < 0. We

may follow along the same path as for the elliptic type and first

consider the special case 𝜅1 = −𝜅2 = 1 of a hyperbolic paraboloid

with orthogonal rulings in the top view.

The construction of 𝑉 ∗
𝑂

from the

top view of the vertex star follows

from Lemma 3.11. The top view v′ =
(𝜉, 𝜂) of a boundary vertex v of 𝑉𝑂 is

scaled from 𝑂 with factor 1/2 and re-

flected at the 𝜉-axis. The diagram edge

line 𝐿(v)∗ passes through the result-

ing point
1

2
(𝜉,−𝜂) and is orthogonal

to (𝜉, 𝜂). Resulting shapes are shown
in Fig. 19.

Hexagons 𝑉 ∗
𝑂
cannot be convex. For a vertex star with Euclidean

regular top view, this follows from the shape of the envelope of possi-

ble edges of 𝑉 ∗
𝑂
, which turns to more general cases via Lemma 3.12;

cf. also Prop. 3.16. We can obtain parallelograms as degenerate

hexagons where two opposite edges degenerate to points. Again

this case belongs to conjugate directions and quad meshes from

parallelograms where one family of diagonals is added to make it

formally a triangle mesh. This yields the fact that quad meshes with

planar faces are visually smoother than any triangle mesh with

non-vanishing dihedral angles [Pellis et al. 2019]. Note that there

are still different signs in dihedral angles of a vertex star in these

quad meshes.

Returning to proper triangle meshes and to the principal symmet-

ric case for now. Eqn. (11) show that 𝛼 < 0 and 𝛽 > 0. The smoothest
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Fig. 19. Vertex stars (shaded) and their dual hexagons for a hyperbolic
surface point. Different edge colors indicate angles of different signs. The
top row shows principal symmetric stars. The star in the middle has four
edges in asymptotic directions (𝜙 = atan

√︁
|𝜅1/𝜅2 |) and thus the marked

triangles are coplanar (𝑃3 = 𝑃6) and two vertices of the dual hexagon agree.
Non-intersecting, convex hexagons can only arise from invalid vertex stars
(bottom right).

appearance happens for hexagons𝑉 ∗
𝑂
with a bowtie shape. The limit

of a bowtie consists of two triangles. It happens when line 𝐴∗ in
the notation of Sec. 3.3.1 passes through 𝑂 , i.e., by Eqn. (9), for

𝜅𝑛 (𝜙) = 0. This characterizes an asymptotic direction. Edges in

asymptotic direction lie in 𝑧 = 0. A centrally symmetric vertex star

𝑉𝑂 with four edges in asymptotic direction has two faces in 𝑧 = 0

and 𝑉 ∗
𝑂
consists of two triangles meeting at 𝑂 (Fig. 19, middle top).

Principal symmetry is not needed for that.

This yields the following known

fact (see [Jiang et al. 2015a; Pellis et al.

2019]):A vertex star𝑉𝑂 at a hyperbolic
point 𝑂 is rough if the top views of its
boundary vertices lie in the interior of
a wedge bounded by the asymptotic
directions.
Due to the different signs of dihedral angles in a principal sym-

metric vertex star, |𝛼 | = |𝛽 | requires 𝛼 = −𝛽 and thus Eqn. (13)

applies. Using the curvature ratio 𝑘 = 𝜅1/𝜅2, it reads

sin𝜙2 = − 1

1 + 𝑘 .

Thus, we obtain a real 𝜙2 only for 𝑘 < −2 (see Fig. 32).

3.3.4 Parabolic cylinder (𝐾 = 0). We let 𝜅1 = 0, 𝜅2 > 0. Up to

scaling, the shapes of vertex stars and dual hexagons are the same

as for 𝜅2 = 1, which we assume in the following. The construction

of𝑉 ∗
𝑂
from the top view of the vertex star follows from Lemma 3.11.

First, project the top view v′ = (𝜉, 𝜂) of
a boundary vertex v of 𝑉𝑂 parallel to the

rulings or 𝜉-axis onto 𝜉 = 0 to obtain (0, 𝜂).
Then, scale from 𝑂 with factor 1/2 yield-

ing (0, 𝜂/2). Now 𝐿(v)∗ passes through that

point and is orthogonal to (𝜉, 𝜂). Resulting
shapes are shown in Fig. 20.
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Fig. 20. Vertex stars (shaded) and their dual polygons for a parabolic surface
point. Different edge colors indicate angles of different signs. The middle
star has the six faces in two planes (𝑃1 = 𝑃2 = 𝑃3 and 𝑃4 = 𝑃5 = 𝑃6) that
intersect at a ruling of the parabolic cylinder. Thus the dual diagram is a
straight line segment. In the non-degenerate cases, the dual hexagons have
their vertices on two parallel lines which are orthogonal to the direction of
vanishing principal curvature.

Only the very special case where two edges of a vertex star lie

in a ruling through its vertex 𝑂 yields a convex star. Its faces lie in

two planes (Fig. 20, top right). These stars have been used by Stein

et al. [2018] for the computation of triangle meshes representing

developable surfaces. An entire triangulation with this type of ver-

tex star has one family of dominant mesh polylines which lie in

rulings. Omitting edges with vanishing dihedral angle, these are just

prismatic surfaces. Among those are principal symmetric meshes

which belong to 𝜅2 = 0 (thus 𝛼 = 0) in our discussion above.

Other cases exhibit some roughness. This is also seen in the

different signs of 𝛼 and 𝛽 in the non-trivial principal symmetric

vertex stars (𝜅1 = 0),

𝛼 = 𝑟𝜅2 tan𝜙 > 0, 𝛽 = −𝑟𝜅2

sin
2 𝜙

cos𝜙
< 0,

where obviously 𝛼 = −𝛽 is not possible.

3.3.5 Summarizing view onto all types. Looking at the types of

vertex stars in Fig. 18-20, one comes to the following observation,

which we prove in the Appendix.

Proposition 3.16. The dual polygon𝑉 ∗
𝑂
to an affine-regular vertex

star 𝑉𝑂 with vertices on a paraboloid 𝑆 and without coplanar faces
is a centrally symmetric hexagon 𝑉 ∗

𝑂
whose vertices lie on an ellipse,

a hyperbola or a pair of parallel lines, depending on whether 𝑆 is (i)
an elliptic paraboloid, (ii) a hyperbolic paraboloid or (iii) a parabolic
cylinder, respectively. In the elliptic case (i), all vertices of𝑉 ∗

𝑂
lie on the

boundary of their convex hull. In the hyperbolic case (ii), two vertices
lie inside the convex hull (parallelogram) of 𝑉 ∗

𝑂
. In the parabolic case

(iii), the vertices lie on parallel lines that are orthogonal to the direction
of vanishing principal curvature.

For principal symmetric stars, a critical value is given by

𝐶 =
|𝜅1 | cos

2 𝜙 − |𝜅2 | sin
2 𝜙

cos𝜙
. (14)

At the border between smoothness and roughness we have 𝐶 = 0

(𝜙 = atan
√︁
|𝜅1/𝜅2 |). 𝐶 < 0 characterizes roughness, where 𝑟 |𝐶 |/2 is

the smallest distance of a vertex in the self-intersecting dual diagram

from the principal edge (𝑦-axis); by Prop. 3.16, this is a lower bound

for the distance of the other vertices from the principal edge. For

𝜙 → 𝜋/2, 𝐶 tends to∞. 𝐶 > 0 belongs to visual smoothness. Given

𝐶 , 𝜙 follows from

cos𝜙 =
𝐶 +

√︁
𝐶2 + 4( |𝜅1 | + |𝜅2 |) |𝜅2 |

2( |𝜅1 | + |𝜅2 |)
. (15)

While cos𝜙 > 0 is always fulfilled, cos𝜙 < 1 happens for 𝐶 < |𝜅1 |.
The upper bound 𝐶 = |𝜅1 | is reached for 𝜙 = 0 and characterizes

a vertex star of valence 4 with edges in principal direction. The

resulting mesh is a principal mesh, known as smoothest polyhedral

surface representation [Pellis et al. 2019].

Affine-regular stars are good approximations of vertex stars in tri-

angle meshes of regular combinatorics whose three families of main

polylines resemble smooth curves. We have shown that the dual

diagram is close to the Euclidean Gauss image (see Fig. 12). There-

fore, our results are applicable to the subtle design of controlled

roughness in meshes that otherwise have a smooth appearance of

the edge pattern, as shown next.

4 ALGORITHMS FOR MESH DESIGN WITH
CONTROLLED ROUGHNESS

Here we introduce several algorithms inspired by the geometric

theory we developed in the previous section. First, we present an

algorithm that uses remeshing as a tool to lay out a mesh with

principal symmetric vertex stars with the desired level of roughness.

Secondly, we elaborate on the manipulation of dual diagrams for

fine-tuning dihedral angles at specific edges. We also provide details

on our optimization framework to enforce design constraints.

Input: mesh𝑀 = (𝑉 , 𝐸, 𝐹 ) or surface 𝑆 : 𝑈 ⊆ R2 → R3

desired roughness level Υ : 𝑈 → R≥0

1 𝑃 ← { 𝑣 | 𝑣 ∈ 𝑉 } or
𝑃 ← { 𝑆 (𝑢, 𝑣) | (𝑢, 𝑣) ∈ 𝑈 ′ ⊆ 𝑈 }

2 𝜅1 (𝑝 ), 𝜅2 (𝑝 ),d1 (𝑝 ),d2 (𝑝 ) ← jet-fitting(𝑝 ), 𝑝 ∈ 𝑃
3 𝜓∗ (𝑝 ) ← atan

(√︁
|𝜅1 / 𝜅2 |

)
, |𝜅1 | ≤ |𝜅2 |, 𝑝 ∈ 𝑃

4 𝜓 (𝑝 ) ← Υ (𝑝 ) 𝜋
2
+ (1 − Υ (𝑝 ) )𝜓∗ (𝑝 ), 𝑝 ∈ 𝑃

5 a(𝑝 ) ← rotate(d1 (𝑝 ),𝜓 (𝑝 ), 𝑝,n(𝑝 ) ), 𝑝 ∈ 𝑃
i.e. rotate d1 (𝑝 ) by𝜓 (𝑝 ) about n(𝑝 )

6 c(𝑝 ) ← reflect(a(𝑝 ),d1 (𝑝 ), 𝑝,n(𝑝 ) ), 𝑝 ∈ 𝑃
i.e. reflect a(𝑝 ) across d1 (𝑝 )

7 b(𝑝 ) ← bisector(a(𝑝 ), c(𝑝 ) ), 𝑝 ∈ 𝑃
8 frame field F ← { (a(𝑝 ), c(𝑝 ), −a(𝑝 ), −c(𝑝 ) ) | 𝑝 ∈ 𝑃 }
9 X ← frame-field-deformation(F)

10 X ← cross-field-interpolation(X)
11 X ← comb-and-cut(X)
12 Ω = { (𝑢, 𝑣) } ⊆ R2 ← miq-global-parameterization(𝑃, X)
13 𝑄 ← quad-mesh-extraction(𝑃,Ω)
14 𝑇 ← triangulate(𝑄, { b(𝑝 ) | 𝑝 ∈ 𝑃 })
15 𝑇 ← optimize(𝑇, 𝑃, Υ)

Return: a triangle mesh𝑇 with controlled roughness

Alg. 21. We can use principal symmetric vector fields to lay out
a mesh on a surface that is already adapted to roughness design
constraints. Details on the optimization routine (line 15) are provided
in Sec. 4.3.
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4.1 Remeshing as a design tool for controlled roughness
Drawing on the results from Sec. 3.3, we know that a vertex star of a

mesh at an elliptic (resp. hyperbolic) point of the underlying surface

is rough if the top views of its boundary vertices lie in the interior

of a wedge bounded by conjugate (resp. asymptotic) directions.
Our algorithm begins by sampling a smooth surface at regularly

spaced locations, 𝑃 . If given a polyhedral mesh instead, we consider

the mesh vertices as the sample points. We compute principal cur-

vature values 𝜅1, 𝜅2 and directions d1,d2 by estimating a locally

best-fit quadric at each of these points 𝑝 ∈ 𝑃 , according to the

jet-fitting method of [Cazals and Pouget 2005].

We select principal direction d1 such that |𝜅1 | ≤ |𝜅2 | and de-

note by𝜓 the angle between an edge in a mesh vertex star and d1.

Smoothness changes into roughness at tan(𝜓∗) =
√︁
|𝜅1 / 𝜅2 | (see

Sec. 3.3).

𝑀1

𝑀2

𝑀3

Υ

0.0 1.0

Fig. 22. A surface designed by Zaha Hadid for the Nuragic and Contempo-
rary ArtMuseum inCagliari, Italy, is remeshed following Alg. 21 with Υ = 0.5,
𝜓 = 𝜋

4
+ 0.5𝜓∗, R(𝑀1 ) = 0.092 (top). Inserting the opposite diagonal in the

intermediate quad mesh results in a smoother mesh, R(𝑀2 ) = 0.046 (mid-
dle), confirming the wedge conditions from Sec. 3.3. By varying Υ across
the surface, we can achieve an appearance that subtly varies from smooth
to rough, even in negatively-curved areas, R(𝑀3 ) = 0.135 (bottom). Scalar
field Υ is provided as a colormap over the surface.

The interval 𝜓 ∈ [𝜓∗, 𝜋/2] defines the bounds for the wedge of
admissible (rough) vertex stars which have two edges in direction d2.

Our choice of d1 allows us to work in the wider of the two wedges

spanned by the critical directions, since𝜓∗ ≤ 𝜋/4. The wedge spans
the complete plane at parabolic points, where𝜓∗ = 0.

We construct principal symmetric vector fields at an angle 𝜓

from d1. The angle 𝜓 is free to vary over the input surface, and

represents the main method of roughness control by the user. We

found themost intuitive input to be a non-negative scalar field Υ over

a parameterization of the surface (see Fig. 22). Alternatively, a field

𝐶 (𝑝) for the critical value (14) can steer roughness/smoothness and

obtain the corresponding angle𝜓 (𝑝) from Eqn. (15), as illustrated

in Fig. 23.

We use the frame field interpolation algorithm from [Panozzo

et al. 2014] to perform an as-rigid-as-possible deformation into or-

thogonal vector fields (or cross field), which can then be used to

compute a global parametrization via mixed-integer quadrangula-

tion [Bommes et al. 2009]. The resulting integer-grid map is used to

extract a quad meshing of the surface using the method of [Ebke

et al. 2013].

The quad mesh is triangulated by inserting, for each face, the

diagonal that bisects the original principal symmetric vectors. This is

the diagonal that is most closely aligned with the principal curvature

direction d2. Notably, inserting the other set of diagonals results in

a comparably smoother mesh (see Fig. 22).

Optionally, the resulting triangle mesh is finally optimized to fine-

tune the roughness control according to the user constraints. This

algorithm is summarized in Alg. 21 and details on the optimization

routine are provided in Sec. 4.3.

𝑀1

𝑀2

𝜍

−0.5 0.5

Fig. 23. A smooth mesh, R(𝑀1 ) = 0.056 (top) is roughened slightly, re-
sulting in a mesh with R(𝑀2 ) = 0.066 (middle). We design the controlled
roughness following Alg. 21, but instead of using a scalar field Υ, we com-
pute𝜓 (𝑝 ) in line 4 via the inverse cosine of Eqn. (15). The field of critical
values𝐶 (𝑝 ) is computed as𝐶 (𝑝 ) = 𝜍 (𝑝 ) |𝜅1 | , with 𝜍 (𝑝 ) ∈ (−0.5, 0.5) (see
colormap, bottom).
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Input: (possibly rough) mesh𝑀 = (𝑉 , 𝐸, 𝐹 ) to be adjusted

edge 𝑒 ∈ 𝐸 with dihedral angle to be modified

new dihedral angle 𝜗 for edge 𝑒

radius 𝑟 of the area of influence for local changes

1 N𝑒 ← { 𝑓 | 𝑓 ∩ 𝑒 ≠ ∅, 𝑓 ∈ 𝐹 } ⊆ 𝐹

2 N𝑟 ← { 𝑓 | dist(𝑓 , 𝑒 ) ≤ 𝑟, 𝑓 ∈ 𝐹 } ⊆ 𝐹

3 n𝑒 ←
∑

𝑓 ∈N𝑒 n𝑓 / ∥
∑

𝑓 ∈N𝑒 n𝑓 ∥
4 C ← local coordinate system with 𝑧-axis aligned with n𝑒
5 Σ← 𝜎 (N𝑒 ) , dual image of N𝑒 in coordinate system C
6 N∗𝑒 ← dual diagram of N𝑒 in coordinate system C
7 𝑀 ′ ← 𝑀

8 while user interaction do
9 Σ′ ← apply user deformations on e∗ ∈ N∗𝑒

10 N′𝑒 ← 𝜎 (Σ′ )
11 𝑀 ′ ← optimize(𝑀 ′, 𝑒, 𝜗,N′𝑒 ,N𝑟 )
12 end

Return: mesh𝑀 ′ with local changes in controlled roughness

Alg. 24. The visualization provided by the dual diagram of a mesh
can double as an interactive design tool for the local adjustment
of dihedral angles. Details on the optimization routine (line 11) are
provided in Sec. 4.3.

4.2 Interactive manipulation of the dual diagram
We discuss the algorithmic details of the manipulation tool in-

troduced in Sec. 2.3. Given a (possibly rough) polyhedral surface

𝑀 = (𝑉 , 𝐸, 𝐹 ), the user wants to modify the dihedral angle 𝛼𝑒 at

edge 𝑒 ∈ 𝐸 so that it meets certain requirement, i.e. 𝛼𝑒 = 𝜗 .

First, we extract the set of faces N𝑒 ⊆ 𝐹 that share a vertex with

edge 𝑒 . We compute a locally adapted Cartesian coordinate system

C, with 𝑧-axis aligned with the average normal n𝑒 ∥
∑

𝑓 ∈N𝑒
n𝑓 . The

dual diagram of N𝑒 in coordinate system C is presented to the user,

where they can manipulate the segment e∗ corresponding to edge

𝑒 = 𝑓𝑙 ∩ 𝑓𝑟 , where 𝑓𝑙 , 𝑓𝑟 ∈ 𝐹 . In practice, manipulating the edge e∗
in the dual diagram, instead of the faces 𝑓𝑙 , 𝑓𝑟 in 3D Euclidean space,

removes unintuitive degrees of freedom in the relative orientation

of the faces, which can be recovered afterwards by applying rigid

motions on𝑀 .

𝑀1 𝑀2

Fig. 25. Our automatic roughening optimization is very flexible despite
its simplicity. Different combinations of the scaling factors 𝜆𝑒 , 𝜆

(1)
𝑓

, and
𝜆
(2)
𝑓

yield very distinct controlled roughness. Here, a smooth mesh with
R(𝑀1 ) = 0.099 (left), is roughened with 𝜆𝑒 = 1.01 and 𝜆

(1)
𝑓

= 0.1 − 𝜆
(2)
𝑓

,
resulting in R(𝑀2 ) = 0.114 (right).

The user deformations of e∗ are mapped back onto 𝑀 . Clearly,

any changes in the mesh are confined toN𝑒 . The user has the option
to specify a neighbourhoodN , withN𝑒 ⊆ N , where the changes in

dihedral angles are smoothed out. The mesh𝑀 is then optimized in

order to satisfy these angle requirements with high accuracy. This

algorithm is summarized in Alg. 24.

4.3 Optimization algorithm
We have mainly dealt so far with the subtle topic of designing trian-

gle meshes that already exhibit the desired level of mild roughness.

These meshes have their vertices on given reference surfaces. We

can also introduce and control roughness by allowing for small

deviations of vertices from the reference surfaces. To that end, we

present a flexible optimization framework that can be used both for

automatic roughening and for fine control of dihedral angles under

orientation constraints.

In the following discussion, we are given an initial triangle mesh

𝑀0 = (𝑉 0, 𝐸, 𝐹 ) either smooth or resulting e.g. from the remeshing

algorithm of Sec. 4.1.We aim to design a rougher mesh𝑀 = (𝑉 , 𝐸, 𝐹 ).
We can handle arbitrary mesh combinatorics, but we assume that

we have a consistent orientation of faces.

Automatic roughening. Roughening a given triangulation is not

necessarily a simple task, especially if the mesh 𝑀0
is not combi-

natorially regular. An effective automatic way is inspired by the

fact that wrinkles appear if the surface area of a mesh is enlarged

while enforcing proximity to a reference surface. We achieve this

by increasing the edge lengths in the starting mesh𝑀0
. Within the

optimization, this is enforced by the following constraint on mesh

edges 𝑒 = 𝑣𝑖𝑣 𝑗 ∈ 𝐸:

𝑐rough (𝑒) := ∥𝑣𝑖 − 𝑣 𝑗 ∥2 − 𝜆𝑒 ∥𝑣0

𝑖 − 𝑣
0

𝑗 ∥
2 = 0.

Here 𝑣0

𝑖
∈ 𝑀0

denotes the initial location of vertex 𝑣𝑖 ∈ 𝑀 . The

scaling factors 𝜆𝑒 ≥ 1 for edges 𝑒 ∈ 𝐸 can be used to drive the

control of roughness in the result. They may be taken constant for

uniform roughening, or may be defined as a scalar-valued function

on𝑀0
(see Fig. 26).

To achieve a wrinkling effect, we must keep proximity to the

initial mesh 𝑀0
. We compute the barycenter 𝑏 𝑓 =

∑
𝑣∈ 𝑓 𝑣 / |𝑓 | of

each face 𝑓 ∈ 𝐹 , and its closest point projection 𝑏∗ on the initial

𝑀1 𝑀2 𝑀3

Fig. 26. Roughening of a smooth triangle mesh with regular combinatorics
and R(𝑀1 ) = 0.064 (left) can be achieved purely through optimization.
Different proximity terms to the original mesh achieve visually different
roughness. Minimizing point-to-point distances (i.e., 𝑐ref,2) leads to a more
structured roughness (middle), R(𝑀2 ) = 0.366, than minimizing tangent-
plane distances (i.e., 𝑐ref,1) (right), R(𝑀3 ) = 0.156. A linearly varying scaling
factor 𝜆𝑒 across the mesh results in a subtle transition from a smooth to a
rough appearance.
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(a) (b) (c) (d) (e) (f) (g) (h)

𝜆𝑒

1.0 1.01

Fig. 27. Comparing different roughening algorithms. (a) A smooth mesh of a surface, with R(𝑀𝑎 ) = 0.016. (b) The surface is roughened using Alg. 21, resulting in
R(𝑀𝑏 ) = 0.340. (c) A mesh with irregular combinatorics is roughened using our automatic roughening algorithm, R(𝑀𝑐 ) = 0.317. The original triangulation
has a notable impact on the visual appearance of controlled roughness: (d) and (f) show two different regular triangulations of the same surface, optimized
following automatic roughening, and with R(𝑀𝑑 ) = 0.378 and R(𝑀𝑓 ) = 0.249. Corresponding 3D-printed models are shown in (e) and (g). The same scalar
factors 𝜆𝑒 were used in (c), (d) and (f), and are shown in (h).

mesh𝑀0
, which falls within some face 𝑓 (𝑏∗) of𝑀0

. We approximate

the distance field of𝑀0
by the distances of 𝑏 𝑓 to the tangent planes

at 𝑏∗. Therefore, proximity is imposed via the constraint:

𝑐ref,1 (𝑓 ) := 𝜆
(1)
𝑓
⟨𝑏 𝑓 − 𝑏∗, n0

𝑓 (𝑏∗ ) ⟩ = 0,

where n0

𝑓 (𝑏∗ ) denotes the initial unit normal at 𝑓 (𝑏∗) ∈ 𝐹 . The
closest point projections 𝑏∗ and corresponding faces 𝑓 (𝑏∗) are re-
computed after each iteration of the optimization.

The scaling factors 𝜆
(1)
𝑓
≥ 0 for faces 𝑓 ∈ 𝐹 can also be used to

control roughness. In general, greater values enforce more proxim-

ity, and thus greater roughness when combined with the previous

constraints (see Fig. 25).

We can combine this with, or completely replace it with, point-

to-point distances that restrict the deviation of the barycenter 𝑏 𝑓
from its original position 𝑏0

𝑓
:

𝑐ref,2 (𝑓 ) := 𝜆
(2)
𝑓
∥𝑏 𝑓 − 𝑏0

𝑓
∥2 = 0.

The different behavior of the two types of barycenter proximity

constraints is illustrated in Fig. 26.

Constraints on dihedral angles. After remeshing or manipulation

of the dual diagram, or in combination with automatic roughening,

one may want to prescribe dihedral angles for selected edges. We

also have to consider the orientation of an angle. Using terminology

𝑀1

𝑀2

𝑀3

Fig. 28. A smooth mesh, R(𝑀1 ) = 0.099 (left), is first roughened using
our algorithm based on remeshing, R(𝑀2 ) = 0.153 (middle). Subsequently,
the roughness level is controlled by optimizing with 𝛼max

𝑒 = 0.8𝛼0

𝑒 , while
preserving the feature lines, R(𝑀3 ) = 0.137 (right). The resulting change in
dihedral angles is visualized in the dual diagrams by corresponding edges
of shorter lengths.

from origami, we classify each edge 𝑒 ∈ 𝐸 as a mountain edge or a

valley edge.

Given explicit dihedral angle requirements 𝛼𝑒 at (possibly sparse)

edges 𝑒 = 𝑓𝑙 ∩ 𝑓𝑟 ∈ 𝐸, these can be enforced in the optimization with

the constraint:

𝑐angle,0 (𝑒) := ⟨n𝑓𝑙 ,n𝑓𝑟 ⟩ − cos (𝛼𝑒 ) = 0,

where n𝑓 denotes the unit normal of face 𝑓 ∈ 𝐹 . These normal

vectors are implicitly constrained by

𝑐norm,0 (𝑓 ) = ⟨n𝑓 ,n𝑓 ⟩ − 1 = 0, 𝑐norm,𝑖 (𝑓 ) = ⟨n𝑓 , 𝑣𝑖 − 𝑣𝑖+1⟩ = 0,

where 𝑓 = 𝑣𝑖𝑣𝑖+1 · · · ∈ 𝐹 . Normal vectors are recomputed after each

iteration of the optimization.

Alternatively, a roughening design may allow for dihedral an-

gles within an admissible range [𝛼min

𝑒 , 𝛼max

𝑒 ] for edge 𝑒 ∈ 𝐸. These
bounds may also be specified as deviation intervals from initial dihe-

dral angles 𝛼0

𝑒 . In this scenario, we prescribe inequality constraints

𝑐 (𝑥) ≥ 0, which we then turn into equality constraints 𝑐 (𝑥) −𝛿2 = 0

with dummy variables 𝛿 . Since we only deal with rather small dihe-

dral angles, certainly within [0, 𝜋/2], the resulting constraints on
edges 𝑒 = 𝑓𝑙 ∩ 𝑓𝑟 ∈ 𝐸 are expressed by

𝑐angle,1 (𝑒) := ⟨n𝑓𝑙 ,n𝑓𝑟 ⟩ − cos (𝛼min

𝑒 ) + 𝛿2

𝑒,1 = 0,

𝑐angle,2 (𝑒) := ⟨n𝑓𝑙 ,n𝑓𝑟 ⟩ − cos (𝛼max

𝑒 ) − 𝛿2

𝑒,2 = 0.

𝑀1 𝑀2

𝜆
(2)
𝑓

0.01 1.0

𝜆𝑒

1.0 1.03

Fig. 29. Our roughening algorithms can preserve feature lines in the original
mesh. Here, a smooth mesh, R(𝑀1 ) = 0.031 (left), is roughened using the
automatic roughening approach, R(𝑀2 ) = 0.127 (middle), by letting 𝜆𝑒 → 1

near the feature line (see colormaps, right).

ACM Trans. Graph., Vol. 43, No. 6, Article 166. Publication date: December 2024.



166:16 • Ceballos Inza, V. et al.

Table 1. Optimization Details. For selected examples, we give the number of vertices, edges, and faces, of the mesh, as well as input scalars and weights used
in the optimization. Each example uses only the constraints whose corresponding weight values are provided. We also indicate the energy of the objective
function at convergence E, as well as the number of iterations, and the total time (in milliseconds) used for optimization.

Fig. |V| |E| |F| 𝜆𝑒 𝜆
(1)
𝑓

𝜆
(2)
𝑓

𝑤ref,1 𝑤ref,2 𝑤angle,0 𝑤angle,𝑘 𝑤norm 𝑤orient E t (ms) #it

1, left 1689 4877 3198 1.03 [.01, .1] [.01, .1] 1.0 1.0 50.0 200.0 1.0 0.7 2.38 · 10
1

4.6 · 10
3

61

5, right 348 976 629 [1.0, 1.06] 1.0 .9 1.33 36 5

26, middle 1148 3307 2160 [1.0, 1.05] 1.0 .1 7.02 502 18

26, right 1148 3307 2160 [1.0, 1.05] 1.0 .9 2.66 · 10
1

180 6

25, right 1326 3871 2545 1.01 [.01, .1] [.01, .1] 1.0 1.0 100.0 1.0 5.0 2.97 · 10
1

328 14

27 (c) 549 1518 979 [1.0, 1.01] 1.0 .9 6.02 · 10
−1

105 7

27 (d) 560 1573 1014 [1.0, 1.01] 1.0 .9 3.00 · 10
−1

172 8

27 (f) 560 1573 1014 [1.0, 1.01] 1.0 .9 1.88 · 10
−1

195 6

28 476 1328 853 100.0 100.0 1.0 5.0 1.09 · 10
−5

273 23

29, middle 517 1470 954 [1.0, 1.03] [.01, 1.0] 1.0 2.47 99 11

30, middle 2116 6085 3970 [1.0, 1.02] 1.0 1.0 .1 .6 50.0 100.0 1.0 1.0 1.07 · 10
1

6.4 · 10
3

38

31 340 947 608 100.0 1.0 1.0 4.02 · 10
−6

846 52

Our topic also requires the consideration of oriented dihedral

edge angles (see Fig. 14). Since cos(𝛼𝑒 ) = cos(−𝛼𝑒 ), we do not work
with signs of angles, but express the correct behavior with respect

to a consistent orientation of face normal vectors in𝑀 . Simplifying

the approach from Fig. 14, we consider oriented edges (half-edges)
®𝑒 = 𝑓𝑙 ∩ 𝑓𝑟 with 𝑓𝑙 to the left and 𝑓𝑟 to the right of ®𝑒 . We compute half-

edge vectors u®𝑒 = 𝑏 𝑓𝑙 −𝑚𝑒 going from themid point𝑚𝑒 = (𝑣𝑖+𝑣 𝑗 )/2
of the corresponding edge 𝑒 = 𝑣𝑖𝑣 𝑗 to the barycenter 𝑏 𝑓𝑙 of adjacent

face 𝑓𝑙 ∈ 𝐹 . We constrain the inner product of the half-edge vectors

with the average normal vector n𝑓𝑙 + n𝑓𝑟 at 𝑒 ∈ 𝐸:

𝑐orient (®𝑒) := ⟨n𝑓𝑙 + n𝑓𝑟 ,u®𝑒 ⟩ − 𝜎𝑒𝛿
2

®𝑒,𝑠 = 0.

Here, 𝜎𝑒 = 1 for a valley edge (as shown in Fig. 14) and 𝜎𝑒 = −1 for

a mountain edge. This constraint ensures that we preserve the type

of edges during optimization. The type of an edge 𝑒 ∈ 𝐸 is initially

computed; edges with 𝛼0

𝑒 < 𝜏 are assumed to have no orientation, as

adjacent faces 𝑓𝑙 , 𝑓𝑟 are nearly planar, and are subsequently skipped.

Here, 𝜏 is a user-set tolerance, typically smaller than half a degree

and chosen based on visual considerations during the design process.

𝑀1

𝑀2

𝜆𝑒

1.0 1.02

Fig. 30. The orientation of dihedral angles𝜎𝑒 can be determined bymapping
a 3D texture onto a smooth surface, R(𝑀1 ) = 0.033 (top). Here, a car
dashboard is later optimized while combining automatic roughening with
constraints on dihedral angles, R(𝑀2 ) = 0.053 (middle). Corresponding
scalars 𝜆𝑒 are shown via color mapping (bottom).

Optimization. Automatic roughening can be applied as a stan-

dalone algorithm. In such an application, the required user inputs are

the initial mesh𝑀0 = (𝑉 0, 𝐸, 𝐹 ) together with scalars 𝜆𝑒 , 𝜆
(1)
𝑓

, and

𝜆
(2)
𝑓

. The variables in the optimization are the vertices 𝑣 ∈ 𝑉 . These
vertices can be directly initialized from the initial mesh, 𝑣𝑖 = 𝑣

0

𝑖
, or

initialized via 3D texture mapping (see Fig. 31). We define energy

functionals via weighted sums of squares of the constraints:

Erough =
∑︁

𝑒∈𝐸 𝑐rough (𝑒)
2, Eref =

∑︁
𝑘
𝑤ref,𝑘

∑︁
𝑓 ∈𝐹 𝑐ref,𝑘 (𝑓 )

2 .

The optimization minimizes the objective function E = Erough+Eref.
The weights𝑤ref,1 and𝑤ref,2 need be chosen according to the par-

ticular application (see Table 1).

In combination with automatic roughening, constraints on di-

hedral angles are often imposed on all edges 𝑒 ∈ 𝐸, 𝐸′ = 𝐸. If the
optimization is run after the remeshing algorithm of Sec. 4.1, then

the set of active edges 𝐸′ ⊆ 𝐸 is computed by proximity to the

sample points 𝑝 ∈ 𝑃 . The scalar field Υ is used to adjust the target

dihedral angles 𝛼𝑒 . Similarly, if the optimization is run after the

interactive manipulation of a dual diagram, the set of active edges

𝐸′ ⊆ 𝐸 is taken from the neighborhoods N ′𝑒 and N𝑟
. The angle 𝜗

enters as the target angle for edge 𝑒 ∈ 𝐸, i.e., 𝛼𝑒 = 𝜗 . The variables

in these optimizations are the vertices 𝑣 ∈ 𝑉 , a unit normal vector

n𝑓 for each face 𝑓 ∈ 𝐹 ′ adjacent to some 𝑒 ∈ 𝐸′, auxiliary variables

𝛿𝑒,1 and/or 𝛿𝑒,2 for 𝑒 ∈ 𝐸′ (if 𝛼𝑒 is specified by bounds) and auxil-

iary variable 𝛿®𝑒,𝑠 for each half-edge ®𝑒 . The corresponding energy

functionals

Eangle,𝑘 =
∑︁

𝑒∈𝐸′ 𝑐angle,𝑘 (𝑒)
2, Enorm =

∑︁
𝑘

∑︁
𝑓 ∈𝐹 ′ 𝑐norm,𝑘 (𝑓 )2,

Eorient =
∑︁

𝑓 ∈𝐹 ′
∑︁
®𝑒∈ 𝑓 𝑐orient (®𝑒)

2,

are weighted and summed into the objective function:

E =
∑︁

𝑘
𝑤angle,𝑘 Eangle,𝑘 +𝑤norm Enorm +𝑤orient Eorient

for minimization. Again, the weights 𝑤angle,𝑘 , 𝑤norm and 𝑤orient
depend on the particular application (see Table 1). This objective

function may be combined with automatic roughening into a single

minimization routine.
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5 RESULTS AND DISCUSSION
Implementation. All of our computational design tools were im-

plemented as Grasshopper components. Grasshopper is a visual

programming environment for procedural geometry generation,

embedded within the Rhinoceros3D computer-aided design applica-

tion, and widely used across industrial design.

We used McNeel’s openNURBS open-source toolkit for geometric

manipulations. We adapted the frame field interpolation algorithm

provided in libigl [Jacobson et al. 2018], and used the constrained

mixed-integer solver CoMISo to compute global parametrizations

[Bommes et al. 2010]. Quad mesh extraction was performed with

the help of OpenMesh [Botsch et al. 2002] and libQEx.
We developed our own unmanaged dynamic-link library from

Intel
®
oneAPI Math Kernel static library, and a NET wrapper to

interface from C#. This was used for efficient sparse matrix manip-

ulations. Similarly, we used Intel
®
’s oneMKL pardiso for solving

large sparse symmetric linear systems. The optimization procedures

introduced in Sec. 4.3 were solved following the guided-projection al-

gorithm of [Tang et al. 2014]. This is equivalent to using a Levenberg-

Marquardt method according to [Madsen et al. 2004], with at most

quadratic constraints.

Numerical optimization. Throughout the optimizations, we use

a damping parameter in the Levenberg-Marquardt algorithm of

10
−6
. The input meshes are normalized to unit average edge length

for stability. Table 1 provides statistics on the size of optimization

problems, the choice of weights, and the time needed. Times are

given in milliseconds (ms) and refer to an Intel
®
Xeon

®
W-2225

CPU@ 4.10GHz, running 64-bit Windows
®
10. Our implementation

is configured to use 64 parallel openMP threads, but could be tuned

depending on the application.

The objective functions from Sec. 4.3 are not zero-residual func-

tionals. Thus, we impose a termination criterion based on the order

of magnitude of the decrease in the total energy of the objective

function. The optimization is terminated when the total energy

decrease, on iteration, does not exceed at least one order of magni-

tude smaller than the order of magnitude of the total energy at the

current iteration.

In practice, whenever the Erough energy term is used, the opti-

mization reaches the termination criterion after 10 to 20 iterations

Fig. 31. A smooth surface was roughened via vertex displacements along
vertex normals, 𝑣𝑟

𝑖
= 𝑣𝑖 +0.1𝑛𝑖 , following a regular 3D texture. The resulting

mesh had a maximum dihedral angle max𝑒 𝛼𝑒 = 16.4°. It was subsequently
optimized with𝛼max

𝑒 = 10° for all 𝑒 ∈ 𝐸. The texture used in the initialization
is clearly visible in the result, R = 0.075. Remarkably, our rendering (left)
closely captures the visual appearance of the fabricated model (right).

Fig. 32. Turning constant isotropic dihedral angles into constant Euclidean
angles. Using Eqn. (12) and Eqn. (13), triangle meshes with constant iso-
tropic dihedral angles on paraboloids are computed (left), seen in constant
Euclidean edge lengths in the dual diagrams. Optimization towards constant
Euclidean angles (right) succeeds and is confirmed by constant spherical
edge lengths in the Gauss images.

(e.g. Fig. 26 and Fig. 27). When used in combination with Eangle,𝑘
terms, the optimization requires 3x to 4x the number of iterations

(e.g. Fig. 31).

Fabrication. The models in Fig. 27 (e) and (g), and Fig. 31 (right),

were fabricated using a Multi Jet Fusion (MJF) 3D printer with Nylon

PA12 as material. All models have a thickness of 1.4mm, and the

average normal vertex displacement is 0.15mm.

Validation. As explained in Sec. 2, roughness is a property of

the visual appearance of a surface. There is no absolute measure

for the ideal controlled roughness, and consequently, the objective

functional in the automatic roughening optimization will not reach

a zero residual. However, our normalized roughness measure R
from Sec. 2.1 proves to be a consistent indicator when comparing

different triangulations of the same underlying surface (see Fig. 4-7

and Fig. 22-30). The dual diagrams also both correctly illustrate

the local changes in dihedral angles (see Fig. 10 and Fig. 28) and

characterize the roughness across a surface (see Fig. 7 and Fig. 22).

When replicating lighting conditions, the visual appearance of the

fabricated models closely resembles our renderings (see Fig. 27 and

Fig. 31).

Euclidean angles. Isotropic geometry not only considerably sim-

plified the local analysis of the behavior of vertex stars depending

on curvature. It is also useful to obtain initial guesses for otherwise

difficult Euclidean problems. An example for that is shown in Fig. 32,

where constant Euclidean dihedral angles on a mesh with smooth

appearance is achieved by this idea of isotropic initialization. Simi-

larly, Fig. 33 shows an example with two unique Euclidean dihedral

angles: one constant Euclidean dihedral angle for mountain edges,

and a different constant Euclidean dihedral angle for valley edges.

Constant dihedral angles are a type of element repetition in architec-

tural structures. Here, it concerns the supports of flat panels along

beams that are aligned with mesh edges.
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Fig. 33. We may also use Sec. 3.3 to compute triangle meshes with different
constant isotropic dihedral angles on edges of different type, resulting in a
constant ratio 𝜌 (left). Optimization achieves a constant ratio of constant
Euclidean angles (right), shown by the spherical edge lengths in the Gauss
image. The initially constant Euclidean edge lengths in the dual diagram
change more the further from the saddle point𝑂 on the paraboloid.

Limitations. Due to the novelty of the topic we had to limit our

scope. Apart from that, a technical limitation is that we based

remeshing on principal symmetric vector fields. Our remeshing

algorithm works best with at most isolated singularities. This is a re-

sult of using an off-the-shelf remesher, such as [Bommes et al. 2009].

Our contribution focuses on guiding such remeshings to achieve

controlled roughness, but it would benefit from amore stable and ad-

vanced remesher. For instance, our current remeshing pipeline does

not guarantee the preservation of feature lines. This can be achieved

to a certain degree by aligning vector fields —that is, given a feature

line direction u(𝑝), by setting𝜓 (𝑝) in line 4 of Alg. 21 to the angle

between u(𝑝) and d1 (𝑝) (see Fig. 28). Alternatively, preservation of

feature lines can be enforced in automatic roughening by excluding

relevant vertices from the optimization (see Fig. 29).

Our contributions focus on design tools, and the proposed rough-

ness control mechanisms might not generate the desired controlled

roughness across geometries in the wild. Similarly, various further

tools which one may want to have in a design environment, e.g.

related to an enumeration of specific patterns, are probably less

interesting for a research paper. Many of them could be created in a

3D texture mapping approach as in Fig. 3.

Future work. The presented methodology can form the basis for

further research. This includes mesh design away from principal

symmetry and the study of other polyhedral surfaces (meshes with

planar faces). Albeit only hinted at, Sec. 2 already contains theory

applicable to Phex meshes, as metric dual objects to triangle meshes.

Also note that our optimization framework in Sec. 4.3 works for

meshes with planar faces with an arbitrary number of vertices.

Even more interesting may be the design of controlled roughness

in polyhedral patterns formed by different types of faces, gener-

alizing the ones with smooth appearance in [Jiang et al. 2015b].

Moreover, the inclusion of lighting conditions and appearance from

typical viewpoints could enter the design stage.
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APPENDIX
This appendix contains the environment map of a cloudy sky used

to render several of the figures, as well as a selection of proofs for

lemmas and propositions presented in Sec. 3.

Fig. 34. Environment map of a cloudy sky, used to render Fig. 4, Fig. 7,
Fig. 15, Fig. 29, Fig. 32 and Fig. 33.

Proof of Lemma 3.5. The unit sphere 𝑆𝑖 is the zero set of the

function 𝐹 (𝑥,𝑦, 𝑧) = 1

2
(𝑥2 +𝑦2) − 𝑧. The normal vectors are parallel

to ∇𝐹 = (𝑥,𝑦,−1). Since a normal vector of 𝑃 is (𝑝1, 𝑝2,−1) the top
view of the contact point must be (𝑝1, 𝑝2). The definition of metric

duality (6) implies 𝜎 (𝑃) = (𝑝1, 𝑝2,−𝑝3). Hence, the top views of

𝜎 (𝑃) and 𝛾𝑖 (𝑃) are the same. □

Proof of Lemma 3.7. Consider the following asymptotic analy-

sis: close to𝑂 , the projection vectors n𝑃 := p∗ − c𝑖 become vertical,

implying that limn𝑃→vertical
∥n𝑃 ∥ = 1. Furthermore, the law of

cosines also implies 𝑑2 = ∥n𝑃 ∥2 + ∥n𝑄 ∥2 − 2∥n𝑃 ∥∥n𝑄 ∥ cos𝜑 . Thus

lim

n𝑃 ,n𝑄→vert.

cos𝜑 = lim

n𝑃 ,n𝑄→vert.

∥n𝑃 ∥2 + ∥n𝑄 ∥2

2∥n𝑃 ∥∥n𝑄 ∥
− 𝑑2

2∥n𝑃 ∥∥n𝑄 ∥

=
1 + 1

2 · 1 · 1 −
𝑑2

2 · 1 · 1 = 1 − 𝑑
2

2

.

Moreover, the Taylor series expansion of the cosine can be expressed

as cos𝜑 = 1 − 𝜑2

2
+ 𝜑4

24
− · · ·, which implies that, in the vicinity of𝑂 ,

the projection vectors become vertical,

and therefore 1 − 𝜑2

2
+ 𝜑4

24
− · · · becomes

1 − 𝑑2

2
. Consequently, the distance be-

tween 𝑃∗ and 𝑄∗ in the dual diagram,

𝑑 = ∥𝑃∗ − 𝑄∗∥, approximates the Eu-

clidean angle 𝜑 of the planes 𝑃 and 𝑄

very well in the vicinity of 𝑂 . □

Proof of Lemma 3.9. The lattice is invariant under translations

by vectors of the form 𝜆a + 𝜇b with 𝜆, 𝜇 ∈ Z. By Example 3.3 there

is always an isotropic motion that leaves the paraboloid 𝑆 invariant

and which appears in the top view as translation by any given

vector. Such isotropic motions to a translation vector 𝜆a + 𝜇b map

𝑇 as a whole onto itself, and thus any two vertex stars are isotropic

congruent.

𝑇 is composed of three families of polylines in vertical planes.

Metric duality 𝜎 maps lines with the same top view to parallel lines.

Thus, 𝜎 (𝑇 ) is formed by strips of hexagonal planar faces that are

attached to each other along parallel edges. This shows that any two

hexagons of 𝑇 ∗ are related by a translation. Hence, metric duality

maps congruent vertex stars to congruent hexagonal faces. □

Proof of Lemma 3.12. An affine map

𝛼 which maps isotropic lines to isotropic

lines, appears in the top view as affine

map 𝛼 ′. It is sufficient to consider𝑂 fixed.

By singular value decomposition of the

matrix 𝐴′ of the linear part of 𝛼 ′, we see
that 𝛼 is the product of isotropic motions

and independent scaling (𝑥,𝑦, 𝑧) ↦→ (𝑎1𝑥, 𝑎2𝑦, 𝑎3𝑧). It is therefore
sufficient to consider only 𝛼 of this form. Then, by Eqn. (8), the

edges of 𝑉 ∗
𝑂
corresponding to 𝛼 (v) are

𝐿(𝜎 (v))∗ : 𝑎1𝜉𝑥 + 𝑎2𝜂𝑦 = 𝑎3

1

2

(𝜅1𝜉
2 + 𝜅2𝜂

2) .

This line arises from the original line 𝐿(v)∗ via the planar affine

map 𝛼∗ : (𝑥,𝑦) ↦→ ( 𝑎3

𝑎1

𝑥,
𝑎3

𝑎2

𝑦) (whose action is illustrated above).

Thus the polygon 𝑉 ∗
𝑂
gets transformed with the affine map 𝛼∗. □
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Proof of Lemma 3.13. Parallelly translating the Euclidean nor-

mals to the faces of 𝑉𝑂 through (0, 0, 1) results in the edges of a

convex pyramid, whose intersection with the plane 𝑧 = 0 forms the

convex diagram 𝑉 ∗
𝑂
. □

Proof of Proposition 3.16. The six vertices of a centrally sym-

metric hexagon always lie on an ellipse, hyperbola, or two parallel

lines. Thus, the first part of the claim is equivalent to the second

part on the convex hull. We consider a vertex star 𝑉𝑂 with central

vertex at the origin and six one-ring vertices with top views ±a,
±b and ±(a + b). We take a in a direction with non-vanishing nor-

mal curvature. Hence, it is different from its conjugate direction ā.
Then, there is an affine map 𝛼 to which Lemma 3.12 applies and

which maps a, ā into principal directions, and thus we can assume

a = (1, 0), b = (𝑏, 𝑐) with 𝑐 ≠ 0 and 𝜅1 ≠ 0. Using Eqn. (8), intersect-

ing adjacent edge lines and scaling the result with factor 𝑐/2, we
get the following four vertices of the dual hexagon 𝑉 ∗

𝑂
,

±(𝜅1𝑐, 𝜅1 (𝑏 + 𝑏2) + 𝜅2𝑐
2), ±(−𝜅1𝑐, 𝜅1 (𝑏 + 𝑏2) + 𝜅2𝑐

2),
which form a rectangle 𝑅. The remaining two vertices are ±v, with

v = (−𝜅1𝑐 (2𝑏 + 1), 𝜅1 (𝑏 + 𝑏2) − 𝜅2𝑐
2).

For a parabolic cylinder to 𝜅2 = 0, all six vertices lie on the parallel

lines 𝑦 = ±𝜅1 (𝑏 + 𝑏2), orthogonal to the 𝑦-axis, i.e., the ruling of

the parabolic cylinder. These lines agree with the 𝑦-axis exactly for

𝑏 = 0 or 𝑏 = −1, which characterizes vertex stars with two edges in

the 𝑦-axis. Since we applied an affine map 𝛼 , the dual diagram was

transformed by an affine map as well. To fully prove orthogonality

of the parallel lines to the direction of vanishing principal curvature,

one needs to work with a more general a. This confirms the claim,

but the discussion of the remaining cases is simpler with a = (1, 0).
In the other two cases, both with 𝜅2 ≠ 0,

we have to discuss the location of v w.r.t.

the rectangle 𝑅. The regions where (i) all

six vertices lie on their convex hull and (ii)

two of them are inside the convex hull are

bounded by the edge lines of 𝑅, as shown

in the inset. One can easily be convinced

that (i) happens exactly for 𝜅1𝜅2 > 0 and

(ii) exactly for 𝜅1𝜅2 < 0. □
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