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Abstract

Complex architectural structures may be built in a simple and cost-effective way if their geometry respects the
fabrication constraints. Examples of such structures are provided by gridshells that are built from straight and flat slats
which are bent on site so that they become tangential or normal to the design surface. Tangential slats follow geodesic
curves on the surface, while normal slats are attached along asymptotic curves. Extending work by Frei Otto, Julius
Natterer and others, who placed the slats tangentially, Eike Schling proposed structures which also contain slats normal
to the reference surface. In the present paper we address those gridshells that consist of three families of bent elements,
either tangential or normal to the design surface, and are arranged in a triangular web. We propose algorithms for
the computational design of such webs that start from a boundary strip and propagate it, partially under additional
guidance, to an entire web.

Keywords: mesh optimization, asymptotic curve, geodesic curve, triangular web, construction-aware design, elastic
gridshell

1. Introduction

The present research has been motivated by certain types of gridshells which Eike Schling and his collaborators
have studied and built in recent years [1, 2, 3, 4, 5]; for examples see Fig. 1. Originally straight flat metal lamellas or
wooden lats are bent and assembled towards the final structure. The lamellas are either orthogonal to an underlying
design surface S or tangential to it. In the former case, they follow asymptotic curves on S, in the latter they are aligned5

with geodesics (shortest paths) of S. In the gridshell of Fig. 1, left, the steel lamellas are orthogonal to the reference
surface and thus follow asymptotic curves. Due to the right node angle, the underlying surface is a minimal surface.
The right image of Fig. 1 shows a gridshell from three families of wooden lats. Two families are orthogonal to the
reference surface, the third is tangential to it.

Following up on a recent contribution by Schling et al. [6], we are interested in arrangements of lamellas in form10

of so-called triangular webs (see e.g. Fig. 3). They consist of three discrete families of curves, which may be seen
as selected curves from the iso-parameter lines u = const., v = const. and the curves u+ v = const. of a parametric
surface x(u,v). For our computational task we can assume an arrangement where three curves pass through each node,
while in practice one may shift one family and thus have only crossings of two lamellas (see Fig. 1. right). Depending
on whether the curves of a family are asymptotic curves (A) or geodesics (G), we have three types of webs which15

we call GGG, AGG, and AAG. Clearly, the presence of asymptotic curves requires reference surfaces S of negative
Gaussian curvature.

Since there is a two-parametric family of geodesics on a surface, but only two one-parametric families of asymptotic
curves (assuming negative Gaussian curvature), the most flexible webs are GGG webs and the most constrained are
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Figure 1: Two gridshells by Eike Schling. Left: Asymptotic pavilion at the campus of TU Munich. Right: Asymptotic geodesic hybrid timber
gridshell (images courtesy Eike Schling, Felix Noe and Yilinke Tan).

AAG webs. All three cases imply shape restrictions, which are most severe for AAG webs. This makes surface20

approximation with such webs a hard task. It has been addressed very recently with a level set method, even for cases
where lamellas are not necessarily tangential or orthogonal to a reference surface [7]. However, there is no guarantee
that approximation will be possible within a meaningful tolerance or that the computed webs are practically useful.
Hence, there is a need for alternative design methods, which is the topic of our paper.

1.1. Contributions25

Our contribution is on the geometric and algorithmic side and addresses the problem of computational design of
geodesic webs (GGG) or hybrid asymptotic-geodesic webs (AGG, AAG). For a careful discussion of the underlying
geometry and all steps of the computational pipeline, we refer to [6]. We focus here on discrete webs. These are
nothing else than triangle meshes of regular combinatorics where the three families of major mesh polylines are discrete
geodesics or asymptotic curves. Unlike [6], we express these properties only with discrete osculating planes and surface30

normals and avoid discretizations based on angles between mesh edges. While angle-based discretizations are correct
and in the case of GGG webs already appeared in the work of R. Sauer [8], we will see that they are less effective than
our discretizations.

Sauer’s construction of discrete GGG webs [8] is a propagation algorithm that starts with a boundary strip and
step-by-step adds further rows of vertices to generate the entire web; see Fig. 3. We present an alternative version of35

propagation based on global optimization that enables slight changes of the input strip and already computed parts.
Moreover, it allows us to steer the shape generation process in various ways. Our main contributions are similar
algorithms for hybrid webs of type AAG and AGG.

1.2. Prior work

In view of recent contributions on the present topic, we refer to [6] and [7] for an extensive overview of prior and40

related work. We concentrate here only on closely related work from those areas to which we contribute, namely
discretization and algorithms for computational design.

The core geometric topic of the present paper are webs of geodesics and asymptotic curves. The geometry of
webs in general is treated in detail in the monograph by Blaschke and Bol [9]. GGG webs in the plane are webs of
straight lines, which according to a seminal paper by Graf and Sauer [10] are formed by the tangents of an algebraic45

curve of class 3. GGG webs on surfaces have been studied by Sauer [8], with the already addressed discrete model
and further explicit nontrivial examples on rotational and spiral surfaces. The partial differential equation which
characterizes GGG webs is found in [11], but there is little hope to obtain a solution which provides useful insight for
design. GGG webs exist on all surfaces of constant Gaussian curvature, since those possess mappings to the plane in
which geodesics get mapped to straight lines [10, 12]. While 4-webs of type AGAG have been numerically computed50

in [6], their exact existence in Euclidean space is still unclear. However, AGAG webs exist in so-called isotropic
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Figure 2: AGG gridshells generated by our propagation algorithm. The gridshells are extracted using the inner vertices of the corresponding webs
(refer to Fig. 3).The blue arrows indicate the propagation directions. The red strips are the first strips of the final AGG webs.

geometry, a simplified version of Euclidean geometry, and possess remarkable properties and relations to various topics
in differential geometry [13].

Discretizations of asymptotic and geodesic curves on surfaces appear in numerous contributions to discrete
differential geometry, including the books by Sauer [14] and Bobenko and Suris [15], and in papers related to so-called55

Voss nets (conjugate nets of geodesics) [16, 17], discrete developable surfaces in form of orthogonal geodesic nets
[18, 19] and asymptotic nets with a constant node angle [20].

Computational design of webs has been addressed in connection with architectural applications [21, 22] and in
design tools for weaving patterns [23, 24, 25], including those where the flat states are curved [26, 27].

2. Discrete geometric models and basic optimization algorithm60

In a 3-web, the three families of curves U , V , and W are sampled from the iso-u, iso-v, and iso-w = u+ v curves of
a parametric surface x(u,v). To construct a 3-web S, e.g., a GGG web, we take a strip that consists of two neighboring
polylines V0 and V1 of the same family V as input (Fig. 3 (a)) and iteratively expand the patches into larger ones using
our propagation method. Assuming that each V curve has n vertices pi, and there are k ≥ 2 curves V0, . . . ,Vk−1 in S, the
propagation is in the direction from Vk−2 to Vk−1, i.e. n new vertices are added as a new boundary curve Vk of S, and65

each of the n U curves and n−1 W curves are extended by 1 vertex, see Fig. 4. The propagation generates the next
row of vertices so that the webs approximately satisfy the constraints for GGG, AAG, or AGG. After propagating one
or a few rows, we optimize the whole structure for a smooth, accurate result. We iterate the two steps until the web
grows to the size that fulfills the design purposes (Fig. 3 (b), (c)). The propagation algorithms for the three types of
web structures are introduced in Sec. 3. We now explain our discrete models and the corresponding global optimization70

algorithms for the three types.

Discrete curves. A polyline C that contains n vertices p0, . . . ,pn−1 is a discrete version of a smooth curve. Its edges are
discrete tangents and three consecutive vertices pi−1pipi+1 span the discrete osculating plane at vertex pi. A discrete
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Frenet frame (ti,np
i ,bi) at point pi can be defined as ti =

pi+1−pi−1
∥pi+1−pi−1∥

, np
i =

2pi−pi+1−pi−1
∥2pi−pi+1−pi−1∥

, bi =
(pi+1−pi)×(pi−pi−1)
∥(pi+1−pi)×(pi−pi−1)∥

,
where ti,np

i ,bi are the tangent vector, the principal normal vector, and the binormal vector, respectively. If edges have75

the same length, tangent and principal normal are outer and inner bisector of the edges through pi. Otherwise, we may
compute them as bisectors via unit edge vectors ei =

pi+1−pi
∥pi+1−pi∥ as ti =

ei+ei−1
∥ei+ei−1∥

and np
i =

ei−ei−1
∥ei−ei−1∥

.

Discrete asymptotic curves. Along an asymptotic curve on a surface, osculating planes of the curve are tangent planes
of the surface. In other words, the surface normal vectors are orthogonal to the osculating planes. Thus, the constraints
on each inner vertex (i = 1, . . . ,n−2) can be expressed as80

(ni,pi −pi+1) = 0,
(ni,pi−1 −pi) = 0,

(1)

where ni is the surface normal vector at pi. Here and in the following, (a,b) denotes the scalar product of vectors a,b.
Thus, the objective function for the asymptotic curves is

Ea = ∑
i
((ni,pi −pi+1)

2 +(ni,pi−1 −pi)
2). (2)

The above objective function takes the surface normal ni at each inner vertex pi as an auxiliary variable. ni is defined
as a unit vector orthogonal to the tangent vectors of two of the three curves passing through pi, as shown in Fig. 4. We
use the following objective function to obtain the surface normal vectors during optimization,85

En = ∑
i
((∥ni∥2 −1)2 +(ni,pi+1 −pi−1)

2 +(ni,pi+n −pi−n)
2). (3)

Discrete geodesic curves. For geodesic curves, the surface normals should be contained in the discrete osculating
planes, i.e., orthogonal to the binormal vectors of the curves:

Eg = ∑
i
(ni,bi)

2. (4)

ni and bi are used as auxiliary variables besides pi. The binormal vectors are obtained through

Eb = ∑
i
((∥bi∥2 −1)2 +(bi,pi+1 −pi)

2 +(bi,pi −pi−1)
2). (5)

Discrete webs via optimization. The objective function for a GGG web can then be expressed as

Eggg = Eu
g +Ev

g +Ew
g +Eu

b +Ev
b +Ew

b +En, (6)

where the superscripts indicate that the constraints are applied to the u = const., v = const., or w = u+ v = const.90

family of curves on x(u,v). For AAG webs (see Fig. 10), we select the iso-v curves as geodesic curves and iso-u and
iso-w curves as asymptotic curves. For AGG (see Fig. 7), the iso-v curves are the asymptotic curves, while the other
two families of curves are geodesics. Thus the AAG and AGG objective functions are

Eaag = Eu
a +Ev

g +Ew
a +Ev

b +En,

Eagg = Eu
g +Ev

a +Ew
g +Eu

b +Ew
b +En.

(7)

To obtain high-quality web structures, we optimize Eggg, Eaag, or Eagg along with constraints for curve fairness and
approximation to the first strip. For each curve, the fairness term places every inner vertex pi of the curve to the95

midpoint of its two neighboring vertices,

E f = ∑
i
(2pi −pi−1 −pi+1)

2. (8)

The fairness for the 3-web structures can be expressed as:

E f air = Eu
f +Ev

f +Ew
f . (9)
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To approximate the first strip consisting of V0 and V1, we use the term

Eappro = ∑
i
(pi −pori

i )2, (10)

where i ∈ [0,2n−1]. The pori
i is the original position of the i-th vertex of the first strip.

The overall objective function E for our web structure optimization can be expressed as100

E = Ec +λ f airE f air +λapproEappro, (11)

where Ec is either Eggg, Eaag or Eagg, while λ f air and λappro are the weights for fairness and approximation. We employ
a Levenberg-Marquardt method as in [28] to minimize E, such that the term Ec reaches a desired accuracy, e.g. 10−5.
The choices for the weights of our results are listed in Table 1.

Sauer [8] proposed to use the angle constraints in Eq. 12 for GGG web propagation. Similar constraints have been
successfully applied to the global optimization of GG nets and AGG webs in [6]. However, we discovered that the105

angle constraints for GGG webs are too restrictive for global optimization, possibly leading to optimization failures, as
shown in Fig.12 (a). Thus, we adopt the constraints based on discrete osculating planes Eq. 6, which have also been
used in [7].

3. Propagation algorithms

(a)

(b) (c)

Figure 3: An example of GGG propagation. Starting with an initial strip (a), we iteratively propagate the boundaries and optimize for accurate GGG
webs (b). The blue arrows indicate the propagation directions. In (c), we extract the gridshell structure (brown) using the inner vertices of the GGG
web (light gray), since the AAG, AGG, or GGG constraints (Eq. 11) are not applied on boundary vertices during global optimization.

In this section, we introduce our propagation algorithms for GGG, AAG, and AGG webs. As mentioned above, our110

webs consist of 3 families of curves U , V , and W , and the propagation always adds further V curves. The purpose of
propagation is to generate approximate GGG, AAG, or AGG webs before global optimization. We will demonstrate the
effectiveness of proper propagation in Section 4. It is not enough to propagate by adding a kind of offset to the current
boundary and hoping that subsequent global optimization will repair an initial choice that did not obey the constraints
at all. We will show that this increases the risk of divergence or requires more global optimization steps along with115

careful and in practice undesirable tuning of parameters.

3.1. GGG webs

Before going into detail we mention that GGG propagation adds a polyline Vk and makes sure that the existing V
polyline Vk−1 becomes a geodesic and that the U and W polylines have the geodesic property at vertices of Vk−1. One
does not yet care about the geodesic property of Vk.120
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GGG propagation by R. Sauer. Sauer [8] introduced a GGG propagation method illustrated in Fig. 4. The vectors ui,1,
vi,1 and wi,1 are the edge vectors of the three curves cast from a point pi, and ui,0, vi,0 and wi,0 are cast to pi. Obviously,
ui−n,1 = ui,0 if pi−n and pi are on the same U polyline. Analogously, vi−1,1 = vi,0 if pi−1 and pi are on the same V
polyline, wi−n+1,1 = wi,0 if pi−n+1 and pi are on the same W polyline. To compute the vertices pi+n−1,pi+n, . . . of
the propagated curve Vk, Sauer’s method uses angle constraints of GGG webs: the one-ring neighborhood of an inner125

vertex pi has 6 edges connecting to it, forming 6 angles each of which is between every 2 neighboring edges. A GGG
web requires equality of opposite angles, i.e.,

α0 = α1,β0 = β1,γ0 = γ1. (12)

As we propagate a boundary layer of S, only the newly added vertices pi+n−1,pi+n, . . . are unknown, but the angles
α0,β0,γ0 around the vertex pi are already fixed (Fig. 5). Similarly, γ2 is also fixed, thus the shape of the triangle T1 is
determined since the angles α1,γ3 and the edge vector vi,1 are given. The same holds for the other triangles attached to130

edges of Vk−1, e.g. T0 in Fig. 5. Each of them has one degree of freedom, expressed by rotation about the common
edge with Vk−1, which has to be used to achieve the correct β -angles. For example, the position of pi+n+1 can be solved
by rotating T1 along edge vi,1 such that the angle β1 between wi,1 and ui,1 equals β0.

However, finding the right triangle positions with correct angles β can lead to ambiguous results: Assume T0 is
already computed and we want to find T1 with β1 = β0; see Fig. 5. When T1 rotates around vi,1, wi,1 is on a rotational135

half-cone C0 with apex pi, vi,1 defining the axis, and angle α1 between axis and rulings. Regarding ui,1 as given, a
constant angle β1 = β0 between wi,1 and ui,1 means that wi,1 is on a half-cone C1 with ui,1 defining the axis. Since C0
and C1 have a shared apex pi, there could be 0, 1, or 2 intersection lines between the two cones, meaning that Eq. 12
may not have solutions, or have 1 or 2 solutions. If there is no solution, the point pi+n+1 cannot be determined. If there
are 2 solutions, it is also hard to pick the one that best fulfills the global fairness of S: this ambiguity of the orange140

triangles in Fig. 5 causes many local minima for the global optimization based on the constraints in Eq. 12, leading to
optimization failures as shown in Fig. 12 (a).
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Figure 4: The red, blue, and green polylines are the U , V and W curves, as indicated by the arrows in the lower left corner. The gray strip is generated
by the propagation from the boundary curve Vk−1 = {pn(k−1), . . . ,pnk−1} to Vk = {pnk, . . . ,pn(k+1)−1}. The closeup shows GGG propagation of
Sauer [8]. To compute the new boundary Vk, Sauer uses a discretization of GGG webs based on the angles between the edges connecting to the
vertices pi, i ∈ (n(k−1),nk−1) on the curve Vk−1: α0 = α1, β0 = β1, γ0 = γ1. However, these constraints lead to ambiguous computational results.

Our GGG propagation method. Our approach is based on slightly less restrictive constraints and uses discrete
osculating planes, to guarantee that the propagation can always proceed. As shown in Fig. 6, we compute the surface
normal vectors ni and ni−1 at pi and pi−1. Since the V curve passing through pi is a geodesic curve, the discrete surface145
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Figure 5: Sauer’s propagation method rotates the
orange triangle T0 around the edge vi,1 to meet the
angle constraints Eq. 12. However, the computation
is not trivial, and it does not always have solutions.

normal vectors should be equivalent to the principal normal vectors of the V curve, thus,

q0 =
vi,0

∥vi,0∥
,q1 =

vi,1

∥vi,1∥
,ni =

q0 −q1

∥q0 −q1∥
. (13)

It means that the normal vector ni is the angle bisector of the two edge vectors vi,0 and −vi,1. Similarly, we compute
vectors ũi,1 and w̃i−1,1 such that ni bisects ui,0 and −ũi,1, ni−1 bisects wi−1,0 and −w̃i−1,1, separately. Note here the
vectors ũi,1 and w̃i−1,1 are only presenting directions but not edge vectors, thus taken as unit vectors. In general, the two
rays cast from pi and pi−1 in their directions ũi,1 and w̃i−1,1 will not meet at the same point, thus we compute points150

p̃0(t0) = pi + t0ũi,1, p̃1(t1) = pi−1 + t1w̃i−1,1, (14)

where t0, t1 are non-negative numbers that are yet unknown, and take the average pi+n = (p̃0 + p̃1)/2 as the propagated
vertex position. As we illustrated in Fig. 5, the shape of the triangle T0 is determined by the angle constraints
Eq. 12, thus the lengths l0 and l1 of the U and W edges (marked as ũi,1 and w̃i−1,1 in Fig. 6) can be obtained:
l0 = ∥u′

i,1∥, l1 = ∥w′
i−1,1∥. We compute p̃0 and p̃1 by

∥p̃0 −pi∥= l0,∥p̃1 −pi−1∥= l1. (15)

Assuming that there are k V curves V0, . . . ,Vk−1 before propagation, then the propagated vertices are pkn, . . . ,pn(k+1)−1.155

Using our method, the propagated boundary vertices can be constructed, except for the first 2 vertices pkn, pkn+1, and
the last vertex pn(k+1)−1. The last vertex doesn’t have a properly defined normal vector nnk−1 at pnk−1, since pnk−1 is
also a boundary vertex, thus we take nkn−1 = nkn so that pn(k+1)−1 can also be simultaneously constructed. We compute
the first 2 vertices using a simple fairness strategy: pkn = 2p(k−1)n −p(k−2)n and pkn+1 = 2p(k−1)n+1 −p(k−2)n+1.
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Figure 6: Our GGG propagation method. According
to Sauer [8], T0 =△pipi−1p′

i+n is a triangle whose
shape is fixed, with a rotational degree of freedom
around the edge pipi−1. Our approach approximates
edge lengths of T0, but the main objective is to make
the surface normals at vertices pi−1,pi, . . . discrete
principle normal vectors of the polylines passing
through it. Angles in the same color around the
same normal vector (e.g., ni) indicate equality.
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Choosing the initial strip. pipipipipipipipipipipipipipipipipi

ppppppppppppppppp
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The initial strip shall be formed by polylines V0,V1 which160

in the final gridshell should be close to geodesics of an underlying smooth surface.
Since propagation takes care of the geodesic property of V1, we want to ensure that
V0 is also close to a geodesic. Although fairness in global optimization almost takes
care of that, we suggest to design the initial strip as shown in the inset. We choose
as V0 an arbitrary fair polyline, e.g. by discrete samples of a B-spline curve. Now we165

consider the triangles T of the strip, which connect an edge pi−1pi of V0 with a vertex pi+n of V1 (see inset). Since
these triangles represent approximate tangent planes of the generated surface, they should lie in approximate rectifying
planes of V0. Such a discrete rectifying plane attached to an edge of V0 can be spanned by the unit edge vector t and b
as an average of the binormal vectors at its end points pi−1 and pi.

The shapes of triangles matter, since their two transversal edges are initial discrete tangents of the U and W170

polylines. In practice, we first compute the midpoint p =
pi−1+pi

2 of the edge, and put pi+n = p+
√

3∥pi−pi−1∥
2 b such that

the triangle T =△pipi−1pi+n is equilateral. This initial choice of points pi+n may not be the final one. We can change
these points within the planes of their triangles and even slightly outside them, to come closer to the targeted shape.

3.2. AGG webs
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Figure 7: AGG propagation. We adjust the point p′
i+n in the plane

spanned by u′
i,1 and w′

i−1,1 so that the U and W curves passing through
p′

i+n are geodesics.

AGG propagation is similar to GGG propagation, but now V polylines are discrete asymptotic curves. By adding a175

polyline Vk, we ensure that the existing V polyline Vk−1 becomes an asymptotic curve, while the U and W polylines
have the geodesic property at vertices of Vk−1.

Our propagation of AGG webs starts from a strip consisting of two asymptotic curves V0 and V1. As shown in
Fig. 7, to generate the propagated curve Vk, we first compute the normal vectors on each vertex pi of the curve Vk−1.
Since Vk−1 is asymptotic, the surface normal ni at pi should be the binormal vector of Vk−1, which can be computed as180

ni =
(pi−pi+1)×(pi−1−pi)
∥(pi−pi+1)×(pi−1−pi)∥ . In practice, we take ni =

(pi−pi−n)×(pi−1−pi)
∥(pi−pi−n)×(pi−1−pi)∥ to avoid instabilities caused by nearly collinear

points pi−1,pi,pi+1. We assume that the normal vector n′
i+n of the generated triangle T0 =△pipi−1p′

i+n is the average
of ni and ni−1: n′

i+n =
ni+ni−1
∥ni+ni−1∥

.
Computation of the position pi+n is based on optimization which is initialized by a first guess p′

i+n. Assuming
that the triangle T0 is equilateral, this initial guess p′

i+n can be computed as p′
i+n = (pi + pi−1)/2 + ld, where185

l =
√

3∥pi −pi−1∥/2, d =
(pi−1−pi)×n′i+n
∥(pi−1−pi)×n′i+n∥

. Since U and W curves are geodesic curves, we update p′
i+n such that the

discrete osculating plane of the U curve at pi defined by span(ui,0,u′
i,1) is coplanar with ni, and span(wi−1,0,w′

i−1,1) is
coplanar with ni−1, while keeping p′

i+n always coplanar with T0. Thus, the constraints are:

p′′
i+n = p′

i+n + t1u′
i,1 + t2w′

i−1,1,

det(p′′
i+n −pi,pi −pi−n,ni) = 0,

det(p′′
i+n −pi−1,pi−1 −pi−n−2,ni−1) = 0,

(16)

where p′′
i+n is the updated position of p′

i+n. We use the block-coordinate descent method [29] to solve for the variables
t1, t2 for a vertex p′

i+n, while assuming all other vertices are constant. We loop over i such that all the vertices of Vk are190

8



updated. We take 10 ∼ 20 iterations to find the final location pi+n of p′
i+n. In Fig. 8, we show that after the adjustments,

the propagation generates an approximate AGG web.

Figure 8: AGG propagation generates V3 as the new boundary. The strips colored in blue and red are the propagated boundary edges before and after
the adjustment. With 10 iterations, the error Eagg (Eq. 7) evaluated on V2 decreases from 2.51 to 2.68×10−3.

Curve guided AGG generation. Our AGG propagation adds further asymptotic curves, meaning that the initial two
curves V0,V1 control the shape of the whole patch S generated by a pure propagation-optimization procedure. However,
the two curves V0 and V1 provide very weak bending of the surface S: The principal normal vectors of the asymptotic195

curves are tangential to the surface, implying that the V curves bend tangentially to the surface, instead of orthogonal to
the surface like what the initial geodesic curves in GGG webs do. Thus, even if the initial V0 and V1 are curved, the
surfaces tend to become flat with nearly straight geodesics unless one provides additional steering (Fig.9 (a)).

AGG webs provide sufficient flexibility for further shape guidance. We use this by prescribing a guide curve, which
provides better shape control and helps to bend the surface and thus to avoid flatness. As shown in Fig. 9 (b) and200

(c), the blue curve is the guide curve G = {g0,g1, . . .}, where gi are vertices. In each surface, the guide curve is used
to guide the directions of the boundary geodesic curve U0 = {p0,pn,p2n, . . .}. Thus we place the curve G such that
g0 = p0. Since the curve V0 is asymptotic, the normal vector n0 on p0 should be the binormal vector b0 of V0 on p0.
Although both of the two vectors are not properly defined on p0 as it is a corner point of S, we can approximately take
b0 = b1, n0 =

v0,1×(g1−p0)

∥v0,1×(g1−p0)∥
. It means that the edge g0g1 should lie in the plane spanned by the tangent vector v0,1205

and the principal normal vector np
0 =

v0,1×b0
∥v0,1×b0∥

of V0. The arbitrary curves we select as guide curves shall be free of
inflection points as discussed also in Sec. 3.3. Then we apply a rigid transformation to the guide curve G such that
g0g1, v0,1 and np

0 are coplanar. In Sec. 4, we show how the different guide curves G affect the shapes of the AGG webs.
We approximate U0 to G using the following constraints:

(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a) (b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b) (c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)

Figure 9: Approximating the initial asymptotic curves (red strip), the AGG web becomes flat (a). We use the dashed blue curve in (b) to guide the
behavior of the boundary geodesic curve. The initial asymptotic curves V0 of (a) and (b) are the same, marked as the red dashed line in (b). (c) is
another view of (b).

pi = gi,

pi −gi = ti∥pi −gi∥,
(17)
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where i = kn, k = 0,1, . . . , gi is the projection point of pi on G, and ti is the tangent vector of G at gi. The first210

equation of Eq. 17 restricts the vertex not too far away from G, and the second equation only allows the vertex to move
tangentially along the curve. Since we use G to bend the surface, instead of approximating the initial two V curves,
we only approximate the first asymptotic curve V0 marked in red in Fig. 9 (b). We define the objective function for
approximating the guide curve as:

Eguide = ∑
i
((pi −gi)2 +(pi −gi − ti∥pi −gi∥)2), (18)

with i ∈ [0,2, . . . ,2k]. The overall objective for AGG optimization can now be expressed as215

E = Ec +λ f airE f air +λapproE ′
appro +λguideEguide, (19)

where the λappro and λguide are the weights for the approximation to V0 and G. The only difference of E ′
appro to Eappro

in Eq. 10 is that i ∈ [0,n−1] for E ′
appro.

Choosing the initial strip. Since we use guide curves to control the bending of the surfaces, the initial strip is obtained
by simply taking pi+n = p′

i+n, where pi ∈V0, and T0 =△pipi−1p′
i+n is equilateral, taking Fig. 7 as a reference. The

vectors ni are taken as the principal normal vectors of V0 at pi.220

Clearly, one can also use guide curves for better control of GGG webs, since those are even more flexible than AGG
webs. However, the method would not work for the most restricted type of webs, namely the AAG webs discussed next.

3.3. AAG webs
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Figure 10: Our AAG propagation direction is from
V0 to V1 which are geodesic curves. The edges col-
ored in light gray belong to the propagation layer
that is to be computed. The planes Pi and Pi−1
colored in blue and purple are the tangent planes at
pi and pi−1, respectively. The thin red line Li is
their intersection line. We update the propogated
vertex p′

i+n ∈ Li to an optimal position pi+n ∈ Li
to meet the AAG constraints.

AAG propagation takes the discrete geodesics as V curves, but differs from the previous propagation methods in the
following way. One adds a polyline Vk and makes sure that this polyline becomes a discrete geodesic, while maintaining225

the asymptotic property of the U and W polylines at vertices of Vk−1. This is rooted in the fact that asymptotic curves
have osculating planes tangent to the surface. Thus, two families of discrete asymptotic curves form a quad mesh with
planar vertex stars, known as A-net in discrete differential geometry. These vertex planes are already determined by
one edge of a U polyline and one edge of a W polyline. Thus we know surface normals at the vertices of the added
polyline Vk and can make it a discrete geodesic.230

We start with a strip consisting of 2 geodesic polylines V0,V1 in V direction. The propagation adds Vk as a
geodesic polyline and extends n asymptotic U curves and n−1 asymptotic W curves associated with it. As shown
in Fig. 10, pi−1,pi, . . . are the vertices of the boundary polyline Vk−1 = {pn(k−1), . . . ,pnk−1}, and p′

i+n−1,p
′
i+n, . . . are

the propagated vertices to be computed. The U and W curves through pi are asymptotic, i.e. (ni,ui,0) = (ni,u′
i,1) = 0,

(ni,wi,0) = (ni,w′
i,1) = 0, where ni is the normal vector at pi, u′

i,1 and w′
i,1 are the yet unsolved U and W edge vectors235

cast from pi. This means that the point p′
i+n lies on the plane Pi spanned by ui,0 and wi,0. Similarly, p′

i+n also lies
on Pi−1 spanned by ui−1,0 and wi−1,0. Hence, p′

i+n lies in the intersection line Li = Pi ∩Pi−1. We denote by
ri =

ni×ni−1
∥ni×ni−1∥

the unit direction vector of the line Li, and orient it by ri =−ri if (ui,0,ri)< 0. Note that ni is also the
principal normal vector of the V curve passing through pi since V curves are geodesics. The intersection line Li is the
ruling of the discrete rectifying strip of the V curve, and the plane Pi is a discrete rectifying plane [7].240
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As for AGG propagation, we provide an initial guess for the vertex p′
i+n and update it to find the final position pi+n

through a simple optimization. We first project the polyline Vk−1 onto the discrete rectifying planes{Pi} as a curve F
that consists of a list of foot points {fi|i = n(k−1), . . . ,nk−1}, such that fi ∈ Li,

fi−fi−1
∥fi−fi−1∥

is the unit tangent vector of
Vk at pi−1. Each foot point fi can be found as follows:

fi = fi−1 + tti−1,(fi −pi,ni) = 0, (20)

where t ≥ 0, ti−1 is the unit tangent vector at pi−1 of the V curve passing through it: ti−1 =
pi−pi−2
∥pi−pi−2∥

. We take the245

first foot point fn(k−1) = (pn(k−1)+pn(k−1)+1)/2, and the first tangent vector tn(k−1) =
pn(k−1)+1−pn(k−1)
∥pn(k−1)+1−pn(k−1)∥

. The first

equation in Eq. 20 keeps fi ∈ Pi−1, and the second one keeps fi ∈ Pi. In this way, we trace the foot points F = {fi}
as the vertices of the medial line of the rectifying strip of Vk−1 [7]. The point p′

i+n ∈ Li then can be expressed as
p′

i+n = fi + rri with r ≥ 0. We first find p′
i+n such that |(p′

i+n − fi,bi)|= 1, where bi is the binormal vector of pi on
curve Vk−1, then our initial estimate for p′

i+n is250

p′
i+n =

√
3∥pi −pi−1∥(p′

i+n − fi)

2
+ fi, (21)

by assuming that △pipi−1p′
i+n is an equilateral triangle.

We then find the optimal position of p′
i+n. Since the propagated Vk is a geodesic, and the U and W curves passing

through p′
i+n are asymptotic, we optimize the vertices of Vk such that for each i ∈ (n(k−1),nk−1),

(n′
i+n,u

′
i,1) = 0,

(n′
i+n,w

′
i−1,1) = 0,

det(n′
i+n,p

′
i+n −p′

i+n−1,p
′
i+n+1 −p′

i+n) = 0.

(22)

This is essentially the objective function Eaag (Eq. 7) of the vertices of Vk. The constraints above are not linear, since the
vertices p′

i+n−1,p
′
i+n, . . . and the normal vectors n′

i+n−1,n
′
i+n are all unknown. We again leverage a block-coordinate255

descent method [29] to simplify the problem and to avoid global optimization: For each i, we take p′
i+n−1, p′

i+n+1 and
n′

i+n as constant, and only adjust p′
i+n. Since p′

i+n ∈ Li, only r is the variable. Loop over i such that all the vertices

get adjusted. Then update n′
i by n′

i =
u′i,1×w′

i−1,1
∥u′i,1×w′

i−1,1∥
for each i. We note that generally, the constraints Eq. 22 cannot be

completely satisfied. We thus optimize for 10 ∼ 20 iterations to find the optimal positions pi+n. We show an example
of AAG propagation before and after adjustments in Fig. 11. We again apply global optimization of the whole surface260

patch S for an accurate and smooth result after propagation.

Figure 11: The strips colored in blue and red are the
propagated boundary layers before and after the ad-
justments. With 16 iterations, the error Eaag for the
vertices on the propagated boundary curve decreases
from 0.80 to 0.053.

p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0

p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1
p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2

p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3 p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4

p5p5p5p5p5p5p5p5p5p5p5p5p5p5p5p5p5

L0L0L0L0L0L0L0L0L0L0L0L0L0L0L0L0L0 L1L1L1L1L1L1L1L1L1L1L1L1L1L1L1L1L1

L3L3L3L3L3L3L3L3L3L3L3L3L3L3L3L3L3 L4L4L4L4L4L4L4L4L4L4L4L4L4L4L4L4L4

We point out that the first curve V0 should be free of inflection points since
the vanishing curvature of V0 at an inflection point p implies vanishing normal
curvature of S in the direction of the tangent of V0 at p, and thus a third asymptotic
direction. This can only appear at flat points. Such a surface is very special and265
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restrictive, and thus the optimization always fails. The in-feasibility can also be
revealed in our discrete AAG construction. The inset is a 2D illustration: the pink
lines represent the discrete rectifying planes of the vertices pi. The intersection lines are marked as red dots. L2 is not
properly defined around the inflection area between p2 and p3.

Choosing the first strip. We generate the first strip for AAG propagation such that the initial curve V0 is approximately270

geodesic and thus use the method for computing initial strips of GGG webs.

4. Results and discussion

Table 1: Evaluation of our results. |Vc| is the number of vertices of the first curve V0. V is the number of vertices of the final GGG, AGG, or AAG
web. bbd is the diagonal length of the axis-aligned bounding box of the web. λ f air and λappro are the weights for the fairness and approximation
terms in Eq. 11. Tp is the average time (in seconds) for each propagation. For AAG and AGG, we take 10 loops of coordinate descent optimization
for each propagation. To/iter is the average global optimization time in seconds for each iteration. Ec is the optimization error Eggg, Eaag, or Eagg,
depending on the type of the web.

Fig. |Vc| |V | bbd λ f air λappro λguide Tp To/iter Ec
2(a) 18 486 1.18 1e-4 1e-4 0.01 0.0153 0.0397 1.32e-5
2(c) 36 1008 4.92 1e-4 1e-4 1e-4 0.0154 0.091 1.31e-5

3 20 240 9.26 1e-4 0.01 - 2.60e-3 0.0233 4.50e-7
9(a) 18 198 0.80 1e-4 1e-3 - 0.0105 0.0173 4.38e-8
9(b) 18 450 1.07 1e-4 1e-3 0.01 0.0116 0.0400 4.31e-6

12(b) 20 480 5.25 1e-4 1e-4 - 2.13e-3 0.0484 4.74e-12
12(c) 20 240 9.89 0.01 0.01 - 2.34e-3 0.0245 1.04e-7
13(d) 32 288 3.74 5e-3 1.00 - 2.43e-3 0.0286 4.05e-8
14(b) 32 672 6.06 1e-3 1e-2 - 2.67e-3 0.0767 6.00e-5

15 21 315 10.87 1e-4 0.10 - 3.64e-3 0.0356 1.32e-6
17(a) 18 450 1.07 1e-4 1e-4 1e-3 0.0148 0.0428 2.32e-8
17(b) 18 450 1.42 1e-4 1e-4 1e-3 0.0153 0.0396 1.14e-8
17(c) 18 468 1.66 1e-4 1e-4 1e-4 0.0160 0.0392 1.18e-8
21(a) 13 156 3.03 1e-4 1e-3 - 0.0161 0.0139 1.40e-5
21(b) 13 156 3.48 1e-4 1e-4 - 0.0178 0.0147 1.87e-5
23(c) 36 1512 4.18 1e-4 1.00 - 4.65e-3 0.187 1.66e-5
25(a) 13 169 6.94 1e-4 1e-4 - 0.0166 0.0145 5.35e-5
25(b) 13 221 3.63 1e-4 1.00 - 0.0160 0.0162 5.73e-5
25(c) 36 1512 3.96 1e-4 1e-4 - 0.0160 0.188 6.61e-5

(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a) (b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b) (c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)

Figure 12: Using Eangle (Eq. 23) instead of Eggg Eq. 6, optimization failed (a). While using our propagation method and optimization based on
osculating planes, high-quality results are generated (b), (c). The blue arrows indicate the propagation directions.
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(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a) (b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)

(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c) (d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)

Figure 13: The GGG web in (a) has self-intersections. We pick a point and drag it to the target position marked as the red dot in (b) to modify
the surface under isometric deformation. We repeat these steps until reaching a desired shape (c), which is already a GGG web with error
Eggg = 8.12×10−5. Optionally, we can further optimize for accuracy and smoothness (d) (maximal deviation of the corresponding vertices of (c)
and (d) is 4.2% of the diagonal length of the axis-aligned bounding box of (c)). The average runtime per iteration for optimizing Eggg is 0.0286s
(Table. 1), while optimizing Eiso takes 9.11×10−3s per iteration.

(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a) (b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)

Figure 14: We continue the GGG propagation-optimization procedures after the isometric deformations in Fig. 13 (c) until the surface grows to a
desired size (a). (b) is the rendering of the gridshell extracted from (a).

Implementation. Our algorithms include GGG, AAG, and AGG web propagation and global optimization. For GGG,
we also developed an interactive design method based on isometric deformation. Our algorithms are implemented in
C++. The choices of weights and the evaluations of our results are listed in Table 1. The algorithms are tested on an275

Intel Xeon E5-2687W 3.0 GHz processor. The implementation of our algorithms has been released as an open-source
project (https://github.com/wangbolun300/WebsViaPropagation).

After each propagation, we apply 10 ∼ 20 iterations of global optimization to improve the quality of the webs,
with default parameters λ f air = 10−4, λappro = 1.0, and λguide = 0.1 if applicable. After the surfaces reach the desired
scales, we reduce λappro and λguide until the web structures are accurate enough. It can be seen from our results that the280

runtime on each AGG and AAG propagation is in the same magnitude as one iteration of global optimization, and for
GGG, each propagation is ∼ 10× faster than each iteration of global optimization. Thus, without heavy computations,
our propagation methods provide high-quality initialization for optimization of GGG, AAG, and AGG web structures.
In this section, the U , V , and W edges of the webs are colored in red, blue, and green, respectively. The initial V curves
are rendered as red dashed lines. The gridshell structures are extracted using the inner vertices as explained in Fig. 3285

and Wang et al. [7]. In the rendering figures of the gridshells, we highlight the first strip of the web from where each of
the gridshells is extracted as a red strip and use blue arrows to indicate propagation directions.
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(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a) (b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b) (c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)

(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d) (e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)

Figure 15: To validate our algorithm, we built a paper model (shown in (d) and (e)) of a GGG gridshell extracted from the GGG web (a). The
shape of the web is similar to Fig. 12 (c), but with different |Vc| and |V | to ease the fabrication. (b) and (c) show the rendered gridshell in the views
corresponding to (d) and (e), respectively.

(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a) (b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)
Figure 16: The AGG propagation of (a) is simply offsetting the vertices, while (b) uses our method. Both examples are generated from the same
strip, approximate the same boundary curve (red dashed curve), use the same guide curve (blue dashed curve) and optimization weights. After each
propagation, we take 10 iterations of global optimization for both (a) and (b). The results show that (a) is highly non-smooth, with error Eagg = 36.16,
while for (b) the error is Eagg = 4.81×10−4. We use the default weights for the optimization as aforementioned.

GGG webs. We first show that the angle constraints (Eq. 12) employed by Sauer [8] are too restrictive and thus not
feasible for GGG web optimization. In Fig. 12 (a), we take the same first strip as in Fig. 3, but optimize Eangle that is
defined as290

Eangle = ∑
i
(
( (vi,1,wi,1)

∥vi,1∥∥wi,1∥
−

(vi,0,wi,0)

∥vi,0∥∥wi,0∥
)2

+
( (ui,1,wi,1)

∥ui,1∥∥wi,1∥
−

(ui,0,wi,0)

∥ui,0∥∥wi,0∥
)2

+
( (ui,1,vi,0)

∥ui,1∥∥vi,0∥
−

(ui,0,vi,1)

∥ui,0∥∥vi,1∥
)2
),

(23)

for the angle constraints Eq. 12, instead of Eggg in Eq. 6. The optimization eventually failed, generating very non-
smooth and low-accuracy results. On the other hand, using the proposed objective Eggg yields high-quality GGG webs
(Fig. 12(b) (c)).

Since the size of the surface grows as the propagation goes on, the surface may self-intersect even if the input strips
don’t. However, this is not acceptable for gridshell design. One may directly modify the input strip and rerun the295

optimization with the hope that there are no self-intersections. Note that GGG webs are less restrictive and contain more
degrees of freedom than AAG and AGG webs. Since geodesic curves map to geodesics under isometric transformations,
we employ an isometry-based interactive design method to help the designers with shape modifications. Our method
allows users to pick a vertex on the web, and drag the vertex to a user-specific position. During the deformations,
we replace the energy term Eggg with Eiso as defined in [30]. We add the term Ever = (pselect −ptarget)

2 to place the300

selected point pselect to the target position ptarget . The overall objective function is

E = Eiso +λapproEver +λ f airE f air. (24)

We cancel the approximation to the first strip so that we can also modify it by selecting pselect on it (Fig. 13 (a) (b)). The
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(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a) (b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)

(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)

(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)

Figure 17: (a), (b), and (c) are the AGG webs with a shared initial boundary V0 (red). The shapes differ a lot due to the different choices of guide
curves (blue). (d) shows a side-by-side comparison of (a), (b), and (c) which are colored in blue, purple, and green, respectively. A rendering of the
gridshell extracted from (c) is presented in Fig. 2 (b).

(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a) (b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b) (c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c) (d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)

Figure 18: Interactively steering the guide curves for AGG optimization. (a) is the same surface as in Fig. 17 (b). After generating (a), we modify its
shape by interactively steering the guide curves to obtain different AGG webs (b) and (c). (d) is a failure case where the boundary of the web cannot
follow the guide curve.

web obtained from isogeometric deformation (c) is already a GGG web with error Eggg = 8.12×10−5. We optimize
(c) for an accurate and smooth GGG web (d). The isometric deformation provides a 3× acceleration compared with
Eggg since Eiso doesn’t need any auxiliary variables like normal vectors or binormal vectors. After the interactive305

deformations, we can continue our propagation-optimization procedures to expand the patch into the desired size
(Fig. 14).

Fig. 15 shows a paper model fabricated from a GGG web generated using our propagation-optimization method.
The size of the web in Fig. 15 (a) is 21×15, with 18 inner U polylines, 13 inner V polylines, and 29 inner W polylines
where we extract each of the strips from. We take one from every three polylines to downsample the model. Then310

the paper strips are placed such that the medial lines of the strips match the polylines, forming a final structure with 7
U strips, 5 V strips, and 9 W strips. The side-by-side comparisons (b)-(d) and (c)-(e) show that the fabricated result
matches the digital model well in appearance.

AGG webs. In Fig. 16, we show the effectiveness of our AGG propagation method. The only difference between the
simple strategy in Fig. 16 (a) and our method in (b) is that (a) doesn’t update the vertices to meet the constraints of315

Eq. 16. Both (a) and (b) are generated using the same procedures and optimization weights. It shows that our method
(b) converges well, while simply offsetting (a) yields a highly non-smooth web after global optimization.

We also show how the guide curves affect the shapes of AGG webs. In Fig. 17, the AGG webs (a), (b), and (c)
have a common boundary curve V0. The surfaces behave differently (d) with different guide curves, meaning that the

15



Figure 19: The left and right figures show another view of Fig. 18 (b)
and (d). The green arrows are the binormal vectors of the different guide
curves. The design of Fig. 18 (d) fails because the binormal vectors of
the guide curve are almost orthogonal to the surface, thus violating the
principle of the AGG constraints.

Figure 20: The propagation for the AAG web on the left are simply
offsetting the boundaries, while for the one on the right we use our
method. Both of the two webs start from the same strips, and after each
propagation, we take 3 iterations of global optimization. The results
show that the simple offset strategy failed, containing self-intersections
and flipped elements, with optimization error Eaag = 5.21. Our method
generates a high-quality result with Eaag = 5.81× 10−6. We use the
default weights for the optimization as aforementioned.

varieties in the guide curves lead to the varieties in the AGG webs. Fig. 18 shows examples where the guide curves320

are modified after generating the AGG webs (a) to add extra varieties (b)-(c). However, improperly placing the guide
curves may cause undesired design results (d). As explained in Fig. 19, the placing of the guide curve should not
violate the constraints of AGG webs: the guide curve acts as a geodesic curve of the web, thus the binormal vectors of
it should lie (almost) tangentially to the surface. More AGG gridshells are presented in Fig. 2.

AAG webs. We show that our AAG propagation method is effective in Fig. 20. We take a simple strategy as a325

comparison to our method: we offset the boundary in the direction of the binormal vectors of V curves such that
the triangles △pipi−1pi+n are equilateral (take Fig. 7 as a reference). After a few propagation-optimization steps,
the generated surface patch is highly irregular, leading to construction failures. Under the same number of steps,
our method generates AAG webs of higher quality. In Fig. 21, we show that the shapes of the AAG webs strongly
depend on the first strip, formed by V0 and V1. Even if V0 is the same, different V1 curves imply a clearly visible shape330

difference. More AAG webs are shown in Fig. 25.
In Fig. 22, we show the geometric error Eaag and the average fairness energy per vertex E f /|V | for the global

optimizations of the first 5 propagations of Fig. 21 (a). For each propagation, we take 5 iterations of global optimization
to improve the quality and accuracy. We compare our propagation method (green lines) with the simple offsetting
strategy (red lines). It shows that for both strategies, the errors created by the new-added layers can be gradually335

decreased by the global optimization. Our strategy outperforms the simple offsetting strategy since our method creates
boundary layers with smaller errors thus improving the convergence. Since the simple offsetting strategy only ensures
smoothness, its fairness is better than our method for the first 10 iterations. However, as the meshes expand and the
total numbers of iterations grow, both strategies achieve smooth webs.

In Fig.23, we show examples of constructing GGG, AGG, and AAG webs from the same initial boundary curve.340

The GGG and AAG propagation starts from the same boundary strip, which is distinctive from the one that generates
AGG, since for GGG and AAG, the initial boundary curves are geodesics, while for AGG, the first boundary curve is
asymptotic.
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(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a) (b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)

(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)

(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d) Figure 21: The first curves V0 of the initial strips for AAG webs (a) and
(b) are the same, but the shapes of (a) and (b) are a lot different due to
the different second V curves V1. In (c), the green and blue surfaces
are for (a) and (b), respectively. The initial strips for the two webs are
shown in (d).
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E f /|V | (right) for the global optimization of the
first 5 propagations of Fig. 21 (a). The Eaag are
shown in log.

Usage as a design tool. One may get the impression that the design approach based on propagation is hard to control
and provides little room for the user to control the shape, apart from the use of guide curves in AGG or GGG webs.345

However, this is not the case. One obtains much closer control by interleaving between propagation and shape editing.
After one or several propagation steps, one can change the so far generated web via standard editing tools such as
relocation of selected vertices, as shown in Fig. 26 and Fig. 27. GGG webs may also be edited via isometric deformation,
as shown in Fig. 14

There is also no need to work with the boundaries as discussed above. One may cut out desirable parts for the final350

design, as shown in Fig. 28.

Summary. In this section, we have shown the effectiveness of our methods and presented different ways to add extra
varieties during or after the web generation. The first boundary curves, the shapes of the first strips, the guide curves,
and the editing points are all key factors that affect the final shapes. During the propagation, we estimate the shapes of
the boundary strips to be generated. It generates shapes that naturally meet the hard constraints that approximate the355

first strip, while sacrificing the accuracy (Eggg, Eaag, and Eagg) and smoothness (E f air). Global optimization is later
adopted to improve accuracy and smoothness as shown in Fig. 22. The approximation to the guide curves and the
edited points are also expressed as energy terms such that they can be included in the global optimization schemes.
Moreover, we observe that the global optimization re-parametrizes surfaces to obtain overall high-quality webs. Along
the propagation direction of the AGG web in Fig. 2 (c), the width between every two neighboring V curves varies a lot,360

as shown in Fig. 24, although our propagation algorithm generates boundary strips with almost equal widths. However,
as the propagation goes on, the areas far from the initial strip tend to become flat since the influence of the boundary
strip becomes weaker and the fairness term E f air in the global optimization dominates, as shown in Fig. 12. The guide
curves and the edited points can be adopted as powerful tools to help the designers deform these areas.

However, these guide curves or edited points cannot be arbitrarily placed. They should still follow the principles of365

the corresponding web constraints (as explained in Fig. 19). In practice, the users may start from a straight line as a
guide curve to generate an almost flat patch (which is likely to fulfill the corresponding web constraints and fairness
conditions), then gradually deform the guide curve as desired, or take several steps to deform the web by dragging the
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(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)

(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)

(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)

(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)

Figure 23: The 3 webs are AAG (a), AGG (b) and GGG (c) propagated from the same initial boundary curve (red dashed lines). The green strip
in (d) is the initial boundary strip for both AAG and GGG, and the blue strip is the initial boundary strip for AGG. The AAG web (a) is the same
surface as in Fig.25 (c), and the AGG (b) web is the same as in Fig. 2 (c). The quality of the GGG web is shown in Table 1.

selected point to a position not too far away in each step, to avoid failures caused by the infeasibilities of guide curves
and the target positions of selected points.370

4.1. Conclusion and future research

Extending recent work by Schling et al. [6] on hybrid asymptotic geodesic gridshells, we presented a computational
design approach to the underlying webs. We included the geodesic webs that had been discussed at first by Sauer [8].
The focus of our discussion has been on propagation from initial strips, and we mentioned ways to embed this process
into a design environment.375

However, we did not develop a complete user interface for design, as this is not really a research topic. For example,
one can think of various ways to support the user in designing the initial strip. Keep in mind that not only the shapes of
the two V curves V0,V1 matter, but also the transversal edges, since those determine the directions in which the U and
W curves start to grow during propagation.

While we provided an effective way to access the design space of the considered webs, one still knows little about380

the essential limitations in their shapes. This is also related to the lack of knowledge on explicit examples, which –
for AAG and AGG webs – does not go beyond rather trivial rotational or cylindrical shapes mentioned in [6]. Thus,
future work may try to better understand the shape limitations present in the considered webs. One could also develop
propagation algorithms for webs containing pseudo-geodesics. Those belong to lamellas which are inclined against the
reference surface under a constant angle different from 0 and 90 degrees. Gridshells based on pseudo-geodesics have385

already received attention [31, 7].
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Figure 24: The AGG web is the same as
in Fig. 2 (c) and Fig. 23 (b). We compute
the average width of each of the V strips,
e.g. the average of the distance d between
every two neighboring asymptotic curves,
along the propagation direction, as shown
in the closeup figure. The average strip
width avg(d) of each strip is plotted on the
right, showing a significant variety and a
smooth transition in strip widths along the
propagation direction.
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Figure 26: (a) is the same AAG
web as in Fig. 21 (b). Similarly
to the interactive design of GGG
(Eq. 24), we select a point (red dot)
on the web and drag it to the tar-
get position while optimizing E =
Eaag + λ f airE f air + λapproEappro +
λapproEver . However, the target po-
sition cannot be arbitrarily selected.
In (c), the target position is too far
from the original position, thus the
AAG web cannot reach the desired
position.

(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a) (b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)

(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c) (d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)

Figure 27: We also extend the interactive de-
sign of GGG to AGG webs, by optimizing
E = Ec + λ f airE f air + λapproE ′

appro + λapproEver +
λguideEguide. (a) is the same AGG web as in Fig. 9
(b). The selected point in (a) and the target position
in (b) are marked as red dots. After obtaining the
deformed AGG web (b), we continue to select and
edit another point (green dots) of it (c)-(d).

Figure 28: This gridshell is generated by trimming the boundary of the AAG web in Fig. 25 (c) along curves of that web.
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